Автор Тема: На мыльную плёнку  (Прочитано 14378 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
На мыльную плёнку
« : 27 Марта 2015, 14:22 »
На мыльную плёнку (n = 1,3) падает нормально пучок лучей белого света. Какова наименьшая толщина плёнки, если в отражённом свете она кажется зелёной (λ = 0,55 мкм)? Сделать рисунок.
« Последнее редактирование: 27 Марта 2015, 16:17 от Сергей »

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Re: На мыльную плёнку
« Ответ #1 : 27 Марта 2015, 14:56 »
Решение.
Покажем рисунок. Определим оптическую разность хода для интерференции отраженных лучей 1 и 2.
\[ \begin{align}
  & \delta ={{n}_{2}}\cdot (AO+OC)-BC,\ BC=AC\cdot \sin \alpha ,\ AC=2\cdot AD=2\cdot h\cdot tg\beta , \\
 & BC=2\cdot h\cdot tg\beta \cdot \sin \alpha ,(AO+OC)=\frac{2\cdot h}{\cos \beta },\ \frac{\sin \alpha }{\sin \beta }=\frac{{{n}_{2}}}{{{n}_{1}}},\ {{n}_{1}}=1,\ \cos \beta =\sqrt{1-{{\sin }^{2}}\beta }, \\
 & \delta =\frac{2\cdot h\cdot {{n}_{2}}}{\cos \beta }-2\cdot h\cdot tg\beta \cdot \sin \alpha , \\
 & \delta =2\cdot h\cdot \sqrt{{{n}_{2}}^{2}-si{{n}^{2}}\alpha }\ \ \ (1). \\
\end{align} \]
При вычислении разности фаз между колебаниями в лучах 1 и 2 нужно, кроме оптической разности хода δ учесть изменение фазы при отражении в т. С. Т.к. в т. С происходит отражение от границы раздела среды оптически менее плотной со средой оптически более плотной (n2 > n1, т.к. n2 > 1), то фаза волны изменяется в т. С на π.
Оптическая разность хода для лучей 1 и 2 в точке С будет иметь вид:
\[ \delta =2\cdot h\cdot \sqrt{n_{2}^{2}-{{\sin }^{2}}\alpha }-\frac{\lambda }{2}\ \ \ (2). \]
Если в отраженном свете плёнка кажется зеленой то для зеленого света наблюдается максимум. Запишем условие максимума:
δ = k∙λ    (3).
Подставим (2) в (1) выразим толщину плёнки:
\[ k\cdot \lambda =2\cdot h\cdot \sqrt{n_{2}^{2}-{{\sin }^{2}}\alpha }-\frac{\lambda }{2}\ ,h=\frac{k\cdot \lambda +\frac{\lambda }{2}}{2\cdot \sqrt{n_{2}^{2}-{{\sin }^{2}}\alpha }}\ \ \ \ (4). \]
Учитываем, что свет падает нормально: α = 0°, минимальная толщина пленки будет при условии k = 0.
\[ h=\frac{\frac{\lambda }{2}}{2\cdot \sqrt{n_{2}^{2}}}=\frac{\lambda }{4\cdot {{n}_{2}}}\ \ \ \ (5). \]
h = 0,1∙10-6 м. 
« Последнее редактирование: 03 Апреля 2015, 06:12 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24