Запишем формулу для определения КПД источника:
\[ \begin{align}
& \eta =\frac{R}{R+r},\ {{\eta }_{1}}=\frac{{{R}_{1}}}{{{R}_{1}}+r}\ \ \ (1),\ \ {{\eta }_{2}}=\frac{{{R}_{2}}}{{{R}_{2}}+r}\ \ \ (2),\ {{\eta }_{2}}=2\cdot {{\eta }_{1}}\ \ \ (3), \\
& \frac{{{R}_{2}}}{{{R}_{2}}+r}\ =2\cdot \frac{{{R}_{1}}}{{{R}_{1}}+r}\ ,\ {{R}_{2}}\cdot ({{R}_{1}}+r)=2\cdot {{R}_{1}}\cdot ({{R}_{2}}+r),\ {{R}_{2}}\cdot {{R}_{1}}+{{R}_{2}}\cdot r=2\cdot {{R}_{1}}\cdot {{R}_{2}}+2\cdot {{R}_{1}}\cdot r, \\
& r\cdot ({{R}_{2}}-{{R}_{1}})=2\cdot {{R}_{1}}\cdot {{R}_{2}}-{{R}_{2}}\cdot {{R}_{1}},\ r=\frac{{{R}_{1}}\cdot {{R}_{2}}}{({{R}_{2}}-{{R}_{1}})}. \\
& r=\frac{3\cdot 10,5}{10,5-3}=4,2. \\
\end{align} \]
r = 4,2 Ом.