Автор Тема: Тело массой  (Прочитано 4897 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Тело массой
« : 21 Апреля 2016, 10:27 »
8. Тело массой m1 = 1,4 кг прикреплено к горизонтально расположенной пружине и покоится на гладком горизонтальном столе. Второй конец пружины закреплён. В тело попадает шарик массой m2 = 0,1 кг, летящий горизонтально со скоростью 30 м/с, и застревает в нём. Тело с шариком начинают совершать колебания с амплитудой 0,2 м. Определите циклическую частоту колебаний. Сделать рисунок.
« Последнее редактирование: 25 Апреля 2016, 14:35 от Антон Огурцевич »

Оффлайн Виктор

  • Ветеран
  • *****
  • Сообщений: 526
  • Рейтинг: +0/-0
  • сделать можно многое, но времени так мало...
Re: Тело массой
« Ответ #1 : 26 Апреля 2016, 11:14 »
Решение: циклическая частота для пружинного маятника связана с массой колеблющегося груза (в нашем случае тело с шариком) и жёсткостью пружины k:
\[ \omega =\sqrt{\frac{k}{{{m}_{1}}+{{m}_{2}}}}. \]
Остаётся определить жёсткость. Рассмотрим неупругий удар тела с шариком и воспользуемся законом сохранения импульса: импульс системы до взаимодействия равен импульсу системы после взаимодействия. До удара был импульс только у шарика, движущегося со скоростью υ = 30 м/с
\[ {p}'={{m}_{2}}\cdot \upsilon , \]
После удара – импульс у тела с застрявшим шариком и направленный в туже сторону (пусть движутся со скоростью u), что и импульс шарика до столкновения
\[ {p}''=\left( {{m}_{1}}+{{m}_{2}} \right)\cdot u, \]
Тогда из закона сохранения импульса определим скорость u
\[ {p}'={p}'',\text{         }{{m}_{2}}\cdot \upsilon =\left( {{m}_{1}}+{{m}_{2}} \right)\cdot u,\text{            }u=\frac{{{m}_{2}}\cdot \upsilon }{{{m}_{1}}+{{m}_{2}}}\cdot  \]
А теперь воспользуемся законом сохранения энергии: кинетическая энергия тела с застрявшим шариком в итоге превращается в потенциальную энергию сжатой пружины (пружина сожмётся на величину, равную амплитуде колебаний). Т.е.
\[ \frac{\left( {{m}_{1}}+{{m}_{2}} \right)\cdot {{u}^{2}}}{2}=\frac{k\cdot {{A}^{2}}}{2}, \]
Определим жёсткость пружины
\[ k=\frac{\left( {{m}_{1}}+{{m}_{2}} \right)\cdot {{u}^{2}}}{{{A}^{2}}}=\frac{\left( {{m}_{1}}+{{m}_{2}} \right)}{{{A}^{2}}}\cdot \frac{{{\left( {{m}_{2}}\cdot \upsilon  \right)}^{2}}}{{{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}}=\frac{m_{2}^{2}\cdot {{\upsilon }^{2}}}{{{A}^{2}}\cdot \left( {{m}_{1}}+{{m}_{2}} \right)}. \]
Таким образом, искомая циклическая частота
\[ \omega =\sqrt{\frac{m_{2}^{2}\cdot {{\upsilon }^{2}}}{{{A}^{2}}\cdot {{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}}}=\frac{{{m}_{2}}\cdot \upsilon }{A\cdot \left( {{m}_{1}}+{{m}_{2}} \right)}. \]
\[ \omega =\frac{0,1\cdot 30}{0,2\cdot \left( 1,4+0,1 \right)}=0,1. \]
Ответ: 0,1 рад/с
« Последнее редактирование: 04 Мая 2016, 08:29 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24