Решение. Покажем рисунок.
Если поле создано положительным зарядом то напряженность в точке направлена от заряда. Если поле создано отрицательным зарядом то напряженность в точке направлена к заряду.
Центр правильного равностороннего треугольника находится на пересечении биссектрис и высот. Углы равностороннего треугольника равны 60°.
Определим расстояние от каждого заряда до центра треугольника.
Рассмотрим треугольник
АВО, треугольник прямоугольный, угол
А = 90°, угол
В = 30°.
\[ {{r}_{1}}={{r}_{2}}={{r}_{3}}=r,\frac{OA}{OB}=\cos \frac{\pi }{6},r=OB=\frac{OA}{\cos \frac{\pi }{6}},r=\frac{0,15\cdot 2}{\sqrt{3}}=\frac{0,3}{\sqrt{3}}(1). \]
Определим числовые значения напряженности
Е1,
Е2 и
Е3 в центре треугольника.
\[ \begin{align}
& {{E}_{1}}={{E}_{2}}=\frac{k\cdot \left| {{q}_{1}} \right|}{{{r}^{2}}}(2),{{E}_{1}}={{E}_{2}}=\frac{9\cdot {{10}^{9}}\cdot 25\cdot {{10}^{-12}}}{{{(\frac{0,3}{\sqrt{3}})}^{2}}}=\frac{9\cdot {{10}^{9}}\cdot 25\cdot {{10}^{-12}}\cdot 3}{0,3\cdot 0,3}=7,5. \\
& {{E}_{3}}=\frac{k\cdot \left| {{q}_{3}} \right|}{{{r}^{2}}}(3),{{E}_{3}}=\frac{9\cdot {{10}^{9}}\cdot 55\cdot {{10}^{-12}}}{{{(\frac{0,3}{\sqrt{3}})}^{2}}}=\frac{9\cdot {{10}^{9}}\cdot 55\cdot {{10}^{-12}}\cdot 3}{0,3\cdot 0,3}=16,5. \\
\end{align} \]
Результирующая напряженность равна векторной суме напряженностей создаваемой каждым зарядом в центре равностороннего треугольника.
\[ \vec{E}={{\vec{E}}_{1}}+{{\vec{E}}_{2}}+{{\vec{E}}_{3}}(4). \]
Определим модуль напряженности суммы векторов
Е1 и
Е2. Рассмотрим треугольник
ВОС, угол
СОВ = 60°.
Для определения модуля напряженности суммы векторов
Е1 и
Е2 используем теорему косинусов.
\[ \begin{align}
& E_{12}^{2}=E_{1}^{2}+E_{2}^{2}+2\cdot {{E}_{1}}\cdot {{E}_{2}}\cdot \cos \frac{\pi }{3},E_{12}^{2}=2\cdot E_{1}^{2}+2\cdot E_{1}^{2}\cdot \frac{1}{2}, \\
& E_{12}^{2}=3\cdot E_{1}^{2},{{E}_{12}}=\sqrt{3}\cdot {{E}_{1}}(5).{{E}_{12}}=\sqrt{3}\cdot 7,5=12,975. \\
\end{align} \]
Вектора
Е1 и
Е2 по модулю равны, результирующий вектор
Е12 делит угол
ВОС пополам, половина угла
ВОС равна 30°. Угол
ВОА равен 60°, угол между вектором
Е3 и
Е12 равен 90°.
Модуль суммы векторов
Е3 и
Е12 определим по теореме Пифагора.
\[ E=\sqrt{E_{12}^{2}+E_{3}^{2}}(6).E=\sqrt{{{12,975}^{2}}+{{16,5}^{2}}}=20,99. \]
Ответ: 21 В/м.