Автор Тема: Определить, какой объём жидкости протекает через шланг  (Прочитано 11214 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Задача 1.5.6. Для полива парниковой рассады используется шланг длиной l = 3 м и диаметром d = 6 см. Давления воды на концах шланга соответственно равны 1,013∙105 Па и 1,4∙105 Па. Определить, какой объём жидкости протекает через шланг за время 15 с. Сделать рисунок.
« Последнее редактирование: 03 Марта 2017, 21:09 от Антон Огурцевич »

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Решение.
Разность давления на концах шланга создает силу давления которая совершает работу по перемещению жидкости.
\[ \begin{align}
  & F=({{p}_{2}}-{{p}_{1}})\cdot S(1),S=\frac{\pi \cdot {{d}^{2}}}{4}(2),F=({{p}_{2}}-{{p}_{1}})\cdot \frac{\pi \cdot {{d}^{2}}}{4}(3). \\
 & A=F\cdot l,A=({{p}_{2}}-{{p}_{1}})\cdot \frac{\pi \cdot {{d}^{2}}}{4}\cdot l(4). \\
\end{align} \]
Работа силы давления переходит в кинетическую энергию текущей жидкости. Определим скорость жидкости и объем.
\[ \begin{align}
  & A=\frac{m\cdot {{\upsilon }^{2}}}{2}(5),m=\rho \cdot V(6),V=S\cdot l,V=\frac{\pi \cdot {{d}^{2}}}{4}\cdot l(7), \\
 & \frac{\rho \cdot \frac{\pi \cdot {{d}^{2}}}{4}\cdot l\cdot {{\upsilon }^{2}}}{2}=({{p}_{2}}-{{p}_{1}})\cdot \frac{\pi \cdot {{d}^{2}}}{4}\cdot l,\frac{\rho \cdot {{\upsilon }^{2}}}{2}=({{p}_{2}}-{{p}_{1}}), \\
 & \upsilon =\sqrt{\frac{2\cdot ({{p}_{2}}-{{p}_{1}})}{\rho }}(8).V=S\cdot \upsilon \cdot t,V=\frac{\pi \cdot {{d}^{2}}}{4}\cdot \sqrt{\frac{2\cdot ({{p}_{2}}-{{p}_{1}})}{\rho }}\cdot t(9). \\
 & \upsilon =\frac{3,14\cdot {{(6\cdot {{10}^{-2}})}^{2}}}{4}\cdot \sqrt{\frac{2\cdot (1,4\cdot {{10}^{5}}-1,013\cdot {{10}^{5}})}{{{10}^{3}}}}\cdot 15=0,37. \\
\end{align} \]
Ответ: 0,37 м3.
« Последнее редактирование: 10 Марта 2017, 06:14 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24