Автор Тема: Вычислить индукцию магнитного поля в точке  (Прочитано 8506 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
22. По двум параллельным бесконечно длинным прямым проводникам текут токи 20 А и 30 А в одном направлении. Расстояние между проводниками 10 см. Вычислить индукцию магнитного поля в точке, удалённой от обоих проводников на одинаковое расстояние 10 см. Сделать рисунок.

Оффлайн alsak

  • Ветеран
  • *****
  • Сообщений: 1976
  • Рейтинг: +8/-0
  • Не делает ошибок тот, кто ничего не делает
Re: Вычислить индукцию магнитного поля в точке
« Ответ #1 : 22 Сентября 2017, 19:23 »
Индукции магнитного поля бесконечного (по умолчанию) прямолинейного проводника с током на расстоянии r1 от проводника с током I1 и на расстоянии r2 от проводника с током I2 равны
\[B_{1} =\frac{\mu _{0} \cdot I_{1} }{2\pi \cdot r_{1} } ,\; \; B_{2} =\frac{\mu _{0} \cdot I_{2} }{2\pi \cdot r_{2} } ,\]
где μ0 — магнитная постоянная, равная 4π·10–7  Тл·м/А,
Предположим, что токи направлены к нам. Пусть искать надо индукцию в точке А (рис. 1).
Направления векторов B1 и B2 в точке А определим по правилу буравчика (правой руки) (рис. 2).
Так как L = r1 = r2 = r, то треугольник CAD — равносторонний, а все углы равны 60°. Следовательно, и угол α между векторами B1 и B2 (которые перпендикулярны к сторонам этого треугольника) так же будет равен 60°. Тогда угол β = (360° - 2α)/2 = 120°.
По принципу суперпозиции и теореме косинусов получаем
\[\vec{B}_{A} =\vec{B}_{1} +\vec{B}_{2} ,\; \; B_{A} =\sqrt{B_{1}^{2} +B_{2}^{2} -2B_{1}^{} \cdot B_{2}^{} \cdot \cos \beta } = \]
\[=\sqrt{\left(\frac{\mu _{0} \cdot I_{1} }{2\pi \cdot r} \right)^{2} +\left(\frac{\mu _{0} \cdot I_{2} }{2\pi \cdot r} \right)^{2} -2\left(\frac{\mu _{0} \cdot I_{1} }{2\pi \cdot r} \right)\cdot \left(\frac{\mu _{0} \cdot I_{2} }{2\pi \cdot r} \right) \cdot \cos \beta } =\frac{\mu _{0} }{2\pi \cdot r} \cdot \sqrt{I_{1}^{2} +I_{2}^{2} -2I_{1} \cdot I_{2} \cdot \cos \beta } ,\]
BA = 8,7·10-5 Тл.
« Последнее редактирование: 04 Октября 2017, 13:44 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24