Решение. Запишем уравнения исходных колебаний
\[ \begin{align}
& x={{A}_{x}}\cos ({{\omega }_{0}}\cdot t+{{\varphi }_{0x}}),y={{A}_{y}}\cos ({{\omega }_{0}}\cdot t+{{\varphi }_{0y}}), \\
& {{\omega }_{0}}=2\cdot \pi \cdot \nu ,{{\omega }_{0}}=2\cdot \pi \cdot 5,{{\omega }_{0}}=10\cdot \pi .{{\varphi }_{0x}}=0,{{\varphi }_{0y}}=\pi . \\
& x=0,03\cos (10\cdot \pi \cdot t),y=0,06\cos (10\cdot \pi \cdot t+\pi ). \\
\end{align}
\]
Определим уравнение траектории результирующего движения в координатах
Х и Y и построим график
\[ \begin{align}
& \frac{{{x}^{2}}}{{{A}_{x}}}+\frac{{{y}^{2}}}{{{A}_{y}}}-\frac{2\cdot x\cdot y}{{{A}_{x}}\cdot {{A}_{y}}}\cdot \cos ({{\varphi }_{0y}}-{{\varphi }_{0x}})={{\sin }^{2}}({{\varphi }_{0y}}-{{\varphi }_{0x}}). \\
& {{\varphi }_{0y}}-{{\varphi }_{0x}}=\pi , \\
& \frac{{{x}^{2}}}{A_{x}^{2}}+\frac{{{y}^{2}}}{A_{y}^{2}}+\frac{2\cdot x\cdot y}{{{A}_{x}}\cdot {{A}_{y}}}=0. \\
& {{(\frac{x}{{{A}_{x}}}+\frac{y}{{{A}_{y}}})}^{2}}=0,\frac{x}{{{A}_{x}}}+\frac{y}{{{A}_{y}}}=0,y=-\frac{{{A}_{y}}}{{{A}_{x}}}\cdot x. \\
\end{align} \]
Определим амплитуду колебаний
\[ A=\sqrt{A_{x}^{2}+A_{y}^{2}+2\cdot {{A}_{x}}\cdot {{A}_{y}}\cdot \cos \Delta \varphi }.A=\sqrt{{{0,03}^{2}}+{{0,06}^{2}}+2\cdot 0,03\cdot 0,06\cdot (-1)}=0,09. \]