Решение.
\[ \begin{align}
& C=\frac{\varepsilon \cdot {{\varepsilon }_{0}}\cdot S}{d}\ \ \ (1),\ S=\pi \cdot {{R}^{2}}\ \ \ (2),\ q=C\cdot U\ \ \ (3),\ q=\frac{\varepsilon \cdot {{\varepsilon }_{0}}\cdot \pi \cdot {{R}^{2}}}{d}\cdot U\ \ \ (4), \\
& E=\frac{U}{d}\ \ \ (5). \\
& 1)\ \varepsilon =1.\ q=\frac{8,85\cdot {{10}^{-12}}\cdot 3,14\cdot {{0,1}^{2}}}{2\cdot {{10}^{-3}}}\cdot 80=11,1\cdot {{10}^{-9}}.\ E=\frac{80}{2\cdot {{10}^{-3}}}=40\cdot {{10}^{3}}. \\
& 2)\ \varepsilon =7.\ q=\frac{7\cdot 8,85\cdot {{10}^{-12}}\cdot 3,14\cdot {{0,1}^{2}}}{2\cdot {{10}^{-3}}}\cdot 80=77,7\cdot {{10}^{-9}}.\ {{E}_{2}}=\frac{E}{\varepsilon }=\frac{40\cdot {{10}^{3}}}{7}=5,71\cdot {{10}^{3}}. \\
\end{align} \]