Решение: если плоская волна падает на решетку наклонно под углом θ, то
характер дифракционной картины в основном сохраняется (небольшой сдвиг, по сравнению с нормальным падением пучка). Угол падения пучка θ = 90º – α, где α = 20º – угол скольжения (угол между плоскостью решёт-ки и пучком), φ = 12º, m = 1. Разность хода между соседними пучками становится равной (на рис. треугольники ACB и ADB - прямоугольные, прилежащий катет равен произведению гипотенузы (АВ равна периоду решётки d) на косинус угла, между этим катетом и гипотенузой, т.е.
\[ \begin{array}{l} {\Delta =DB-AC=d\cdot \cos \left(\alpha -\varphi \right)-d\cdot \sin \theta =d\cdot \cos \left(\alpha -\varphi \right)-d\cdot \sin \left(90{}^\circ -\alpha \right),} \\ {\Delta =d\cdot \left(\cos \left(\alpha -\varphi \right)-\cos \alpha \right).} \end{array} \]
Воспользуемся формулой дифракционной решётки (разность хода волн равна целому числу длин волн, m - целое число, m = 1 по условию)
\[ \begin{array}{l} {\Delta =m\cdot \lambda ,} \\ {\lambda =\frac{d\cdot \left(\cos \left(\alpha -\varphi \right)-\cos \alpha \right)}{m} =\frac{2\cdot 10^{-6} \cdot \left(0,99-0,94\right)}{1} =1\cdot 10^{-7} .} \end{array} \]
Ответ: 0,1 мкм. (примечание: - слишком большая длина волны, скорее всего в условии угол φ = 12 минут = 0,2º, тогда нормально получается: длина волны будет 2,34 нм)