Автор Тема: Найти вектор магнитной индукции в точке  (Прочитано 9108 раз)

0 Пользователей и 3 Гостей просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
«Магнитное поле постоянных токов»
Задачи для контрольной работы
В вершинах правильной геометрической фигуры расположены бесконечно длинные проводники, направление токов которых указано на рисунке Рис. 30 . Найти вектор магнитной индукции в точке А, расположенной в центре геометрической фигуры. Значения токов I1 = 2 А, I2 = 2 А, I3 = 2 А, I4 = 2 A и стороны a = 4 см для вариантов 0 – 10* приведены в табл. 8. Определить В = ? Сделать рисунок.



Оффлайн Виктор

  • Ветеран
  • *****
  • Сообщений: 526
  • Рейтинг: +0/-0
  • сделать можно многое, но времени так мало...
Решение: направление вектора магнитной индукции прямого тока определяется по правилу правого винта (буравчика). Магнитная индукция в точке A будет равна геометрической сумме индукций полей, создаваемых в этой точке каждым из токов (принцип суперпозиции полей) – см. рис.
\[ \vec{B}={{\vec{B}}_{1}}+{{\vec{B}}_{2}}+{{\vec{B}}_{3}}+{{\vec{B}}_{4}} \]
где индукция прямого тока на расстоянии r от него
\[ {{B}_{i}}=\frac{{{\mu }_{0}}\cdot {{I}_{i}}}{2\pi \cdot {{r}_{i}}}, \]
μ0 = 4π•10-7 Гн/м - магнитная постоянная. Т.к. фигура правильная, то это квадрат, токи равны между собой и расстояния тоже, причём
\[ r=a\cdot \sqrt{2}. \]
то вектора B1 и B3 равны по модулю и противоположны по направлению, поэтому их сумма будет равна нулю. Векторы B2 и B4  сонаправлены (см. рис.), тогда искомая индукция
\[ \begin{align}
  & B={{B}_{2}}+{{B}_{4}}=2\cdot {{B}_{i}}=2\cdot \frac{{{\mu }_{0}}\cdot {{I}_{i}}}{2\pi \cdot {{r}_{i}}}=\frac{{{\mu }_{0}}\cdot I}{\pi \cdot a\cdot \sqrt{2}}, \\
 & B=\frac{4\pi \cdot {{10}^{-7}}\cdot 2}{\pi \cdot 4\cdot {{10}^{-2}}\cdot \sqrt{2}}=\sqrt{2}\cdot {{10}^{-5}}. \\
\end{align} \]
Ответ: 1,41•10-5 Тл
« Последнее редактирование: 06 Мая 2016, 06:17 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24