Решение.
1). Определим напряжённость электростатического поля в центре квадрата.
Покажем рисунок (рис 1). Если заряд положительный вектор напряженности в точке направлен от заряда, если заряд отрицательный вектор напряженности в точке направлен к заряду.
\[ \begin{align}
& \vec{E}={{{\vec{E}}}_{1}}+{{{\vec{E}}}_{2}}+{{{\vec{E}}}_{3}}+{{{\vec{E}}}_{4}}.{{Q}_{1}}={{Q}_{2}}={{Q}_{3}}={{Q}_{4}}=Q.{{R}_{1}}={{R}_{2}}={{R}_{3}}={{R}_{4}}=\frac{\sqrt{2}\cdot a}{2}=R, \\
& {{E}_{1}}={{E}_{2}}={{E}_{3}}={{E}_{4}}=\frac{k\cdot Q}{{{R}^{2}}}.{{{\vec{E}}}_{1}}+{{{\vec{E}}}_{3}}=0,{{{\vec{E}}}_{2}}+{{{\vec{E}}}_{4}}=0,E=0. \\
\end{align} \]
2). Определим напряжённость электростатического поля в середине одной из сторон квадрата (рис 2).
\[ \begin{align}
& \vec{E}={{{\vec{E}}}_{1}}+{{{\vec{E}}}_{2}}+{{{\vec{E}}}_{3}}+{{{\vec{E}}}_{4}}.{{Q}_{1}}={{Q}_{2}}={{Q}_{3}}={{Q}_{4}}=Q.{{r}_{1}}={{r}_{2}}=\sqrt{{{a}^{2}}+\frac{{{a}^{2}}}{4}}=\frac{\sqrt{5}\cdot a}{2}, \\
& {{r}_{3}}={{r}_{4}}=\frac{a}{2},{{E}_{1}}={{E}_{2}}=\frac{k\cdot Q\cdot 4}{5\cdot {{a}^{2}}}\,(1),{{E}_{3}}={{E}_{4}}=\frac{k\cdot Q\cdot 4}{{{a}^{2}}}.{{{\vec{E}}}_{3}}+{{{\vec{E}}}_{4}}=0. \\
& \vec{E}={{{\vec{E}}}_{1}}+{{{\vec{E}}}_{2}}. \\
\end{align} \]
соsα найдем используя теорему косинусов:
\[ \begin{align}
& {{a}^{2}}={{(\frac{\sqrt{5}\cdot a}{2})}^{2}}+{{(\frac{\sqrt{5}\cdot a}{2})}^{2}}-2\cdot \frac{\sqrt{5}\cdot a}{2}\cdot \frac{\sqrt{5}\cdot a}{2}\cdot \cos \alpha , \\
& cos\alpha =\frac{{{(\frac{\sqrt{5}\cdot a}{2})}^{2}}+{{(\frac{\sqrt{5}\cdot a}{2})}^{2}}-{{a}^{2}}}{2\cdot \frac{\sqrt{5}\cdot a}{2}\cdot \frac{\sqrt{5}\cdot a}{2}},cos\alpha =\frac{\frac{5\cdot {{(5\cdot {{10}^{-2}})}^{2}}}{4}+\frac{5\cdot {{(5\cdot {{10}^{-2}})}^{2}}}{4}-{{(5\cdot {{10}^{-2}})}^{2}}}{2\cdot \frac{5\cdot {{(5\cdot {{10}^{-2}})}^{2}}}{4}}=0,6. \\
\end{align}
\]
Для нахождения напряженности используем теорему косинусов:
\[ \begin{align}
& {{E}^{2}}=E_{1}^{2}+E_{2}^{2}+2\cdot {{E}_{1}}\cdot {{E}_{2}}\cdot \cos \alpha \ \ \ (3).{{E}_{1}}=\ {{E}_{2}},E={{E}_{1}}\cdot \sqrt{2+2\cdot \cos \alpha }, \\
& E=\frac{4\cdot k\cdot Q}{5\cdot {{a}^{2}}}\cdot \sqrt{2+2\cdot \cos \alpha }. \\
& E=\frac{4\cdot 9\cdot {{10}^{9}}\cdot 2\cdot {{10}^{-9}}}{5\cdot {{(5\cdot {{10}^{-2}})}^{2}}}\cdot \sqrt{2+2\cdot 0,6}=10303,8. \\
\end{align}
\]
Ответ: 1) 0; 2) 1,03 кВ/м.