Автор Тема: Определите, как и во сколько раз изменится угловая скорость вращения платформы  (Прочитано 12702 раз)

0 Пользователей и 2 Гостей просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
54. Платформа, имеющая форму сплошного однородного диска, может вращаться по инерции вокруг неподвижной вертикальной оси. На краю платформы стоит человек, масса которого в 3 раза меньше массы платформы. Определите, как и во сколько раз изменится угловая скорость вращения платформы, если человек перейдёт ближе к центру на расстояние, равное половине радиуса платформы. Сделать рисунок.

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Решение.
 Для решения задачи применим закон сохранения момента импульса. Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке, и состоит в следующем:
Если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.
Момент импульса определяется по формуле:
L = J∙ω   (1).
ω – угловая скорость. J – момент инерции.
J1∙ω1  =  J2∙ω2   (2).
Момент инерции скалярная величина. Определим суммарный момент инерции в каждом случае относительно перпендикулярной оси, проходящей через центр большего диска.
Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J0 (J0 – момент инерции диска с человеком) относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния r между осями:
\[ \begin{align}
  & {{J}_{1}}={{J}_{0}}+{{J}_{01}},{{J}_{1}}=\frac{m\cdot {{R}^{2}}}{2}+\frac{m}{3}\cdot {{R}^{2}}=\frac{5}{6}\cdot m\cdot {{R}^{2}}(3), \\
 & {{J}_{2}}={{J}_{0}}+{{J}_{02}},{{J}_{2}}=\frac{m\cdot {{R}^{2}}}{2}+\frac{m}{3}\cdot {{(\frac{R}{2})}^{2}}=\frac{7}{12}\cdot m\cdot {{R}^{2}}(4). \\
 & \frac{{{\omega }_{2}}}{{{\omega }_{1}}}=\frac{\frac{5}{6}\cdot m\cdot {{R}^{2}}}{\frac{7}{12}\cdot m\cdot {{R}^{2}}}=\frac{10}{7}=1,43. \\
\end{align}
 \]
Угловая скорость увеличится в 1,43 раза.
« Последнее редактирование: 26 Мая 2017, 06:12 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24