Решение.
Максимум дифракционной решетки находится по формуле:
d∙sinφ = k∙λ (1),
d – порядок дифракционной решетки
\[ d=\frac{l}{N}(2). \]
Первый спектр заканчивается фиолетовым цветом (λ
1 = 400 нм,
k1 = 1), второй спектр начинается красным цветом (λ
2 = 760 нм,
k2 = 2).
Определим углы отклонения конца первого и начала второго спектров и разность углов отклонения конца первого и начала второго спектров
\[ \begin{align}
& \frac{l}{N}\cdot \sin \varphi =k\cdot \lambda ,\ \sin \varphi =\frac{N\cdot k\cdot \lambda }{l},\ \ \sin {{\varphi }_{1}}=\frac{N\cdot {{k}_{1}}\cdot {{\lambda }_{1}}}{l}(3),\ \sin {{\varphi }_{2}}=\frac{N\cdot {{k}_{2}}\cdot {{\lambda }_{2}}}{l}(4). \\
& \sin {{\varphi }_{1}}=\frac{50\cdot 1\cdot 400\cdot {{10}^{-9}}}{{{10}^{-3}}}=0,02,{{\varphi }_{1}}={{1,146}^{0}}, \\
& \sin {{\varphi }_{2}}=\frac{50\cdot 2\cdot 760\cdot {{10}^{-9}}}{{{10}^{-3}}}=0,076,{{\varphi }_{1}}={{4,359}^{0}}. \\
& \Delta \varphi ={{\varphi }_{2}}-{{\varphi }_{1}}\,(5). \\
& \Delta \varphi ={{4,359}^{0}}-{{1,146}^{0}}={{3,213}^{0}}. \\
\end{align} \]
Ответ: 3,213°.