Решение.
На рисунке покажем силы которые действуют на нижний шарик. На шарик действует сила Кулона и сила тяжести. Шарики находятся в равновесии, их равнодействующая равна нулю. Найдем проекции на ось
Оу.
\[ {{\vec{F}}_{K}}+m\cdot \vec{g}=0.Oy:{{F}_{K}}-m\cdot g=0(1). \]
Запишем формулу для определения силы Кулона
\[ {{F}_{K}}=\frac{k\cdot \left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|}{{{r}^{2}}},{{F}_{K}}=\frac{k\cdot {{q}^{2}}}{{{r}^{2}}}(2).
\]
Где:
r – расстояние между центрами шариков (
r >> R),
k = 9∙10
9 Н∙м
2/Кл
2.
Определим массу шарика
\[ m=\rho \cdot V(3),V=\frac{4}{3}\cdot \pi \cdot {{R}^{3}}(4). \]
Где: ρ – плотность алюминия.
(4) подставим в (3), (3) и (2) в (1) определим на каком расстоянии будут находиться в равновесии заряженные шарики при вертикальном положении стержня
\[ m=\rho \cdot \frac{4}{3}\cdot \pi \cdot {{R}^{3}},\frac{k\cdot {{q}^{2}}}{{{r}^{2}}}-\rho \cdot \frac{4}{3}\cdot \pi \cdot {{R}^{3}}=0,\frac{k\cdot {{q}^{2}}}{{{r}^{2}}}=\rho \cdot \frac{4}{3}\cdot \pi \cdot {{R}^{3}},r=\sqrt{\frac{3\cdot k\cdot {{q}^{2}}}{4\cdot \pi \cdot \rho \cdot {{R}^{3}}}}(5). \]