А14 Вариант 1Если из заряженного и отключенного от источника тока плоского конденсатора, энергия которого W
0, удалить пластину с диэлектрической проницаемостью ε = 5, полностью заполняющую конденсатор, то изменение его энергии ΔW будет равно:
А14 Вариант 2Если в плоском заряженном и не отключенном от источника тока конденсаторе, энергия которого W
0, расстояние между обкладками уменьшить в 4 раза, то изменение энергии ΔW конденсатора будет равно:
Решение.
Вариант 1
На отключенном от источника тока конденсаторе заряд остается неизменным. Для расчета энергии конденсатора воспользуемся формулой
\[ W=\frac{{{q}^{2}}}{2\cdot C} \]
Емкость конденсатора
\[ C=\frac{{{\varepsilon }_{0}}\cdot \varepsilon \cdot S}{d} \]
Найдем энергию конденсатора после удаления пластины с диэлектрической проницаемостью ε
\[ \begin{align}
& {{W}_{0}}=\frac{{{q}^{2}}\cdot d}{2\cdot {{\varepsilon }_{0}}\cdot \varepsilon \cdot S};{{W}_{1}}=\frac{{{q}^{2}}\cdot d}{2\cdot {{\varepsilon }_{0}}\cdot S};\frac{{{W}_{0}}}{{{W}_{1}}}=\frac{1}{\varepsilon }=\frac{1}{5} \\
& {{W}_{1}}=5\cdot {{W}_{0}} \\
\end{align}
\]
Изменение энергии
ΔW = W1 – W0 = 4· W0
Ответ 2
Вариант 2
Если конденсатор не отключен от источника тока, то напряжение на нем остается постоянным и энергия конденсатора
\[ W=\frac{C\cdot {{U}^{2}}}{2} \]
Найдем энергию конденсатора после уменьшения расстояния между пластинами. d
0 – первоначальное расстояние между пластинами конденсатора, d
1 – конечное расстояние между пластинами. Из условия задачи d
0 = 4d
1\[ \begin{align}
& {{W}_{0}}=\frac{{{\varepsilon }_{0}}\cdot \varepsilon \cdot S\cdot {{U}^{2}}}{{{d}_{0}}\cdot 2};{{W}_{1}}=\frac{{{\varepsilon }_{0}}\cdot \varepsilon \cdot S\cdot {{U}^{2}}}{{{d}_{1}}\cdot 2} \\
& {{W}_{1}}=4\cdot {{W}_{0}} \\
\end{align}
\]
Изменение энергии
ΔW = W1 – W0 = 3· W0
Ответ 2