Решение: Сопротивление цепи, содержащей последовательно соединённые конденсатор, катушку индуктивности и резистор переменному току:
\[ Z=\sqrt{R^{2} +\left(\omega \cdot L-\frac{1}{\omega \cdot C} \right)^{2}}. \]
R – сопротивление резистора, ω∙L – сопротивление катушки переменному току, 1/(ω∙С) - сопротивление конденсатора переменному току, ω –циклическая частота. Запишем закон Ома для цепи переменного тока:
\[ I_{0} =\frac{U_{0} }{Z}, \]
I0 и U0 – амплитудные значения силы тока и напряжения в цепи.
При увеличении электроёмкости C конденсатора, его сопротивление пере-менному току будет становится меньше, что приведёт к уменьшению полного сопротивления цепи Z. В этом случае сила тока в цепи будет возрастать. В тот момент, когда сопротивление конденсатора станет равным сопротивлению катушки, полное сопротивление цепи станет Z = R – примет наименьшее значение, при этом сила тока достигнет максимума. При последующем увеличении ёмкости конденсатора, полное сопротивление цепи начнёт увеличиваться, что приведёт к уменьшению силы тока в цепи.
Ответ: 3) сначала возрастать, затем убывать.