Решение: Пусть u – скорость эскалатора, l – его длина и N – число ступенек на неподвижном эскалаторе. Число ступенек, приходящихся на единицу длины эскалатора, равно N/l.
Если мальчик идет со скоростью υ относительно эскалатора, то время его пребывания на эскалаторе
\[ t=\frac{l}{\upsilon +u}. \]
При этом путь, пройденный человеком по эскалатору:
\[ S=\upsilon \cdot t=\upsilon \cdot \frac{l}{\upsilon +u}. \]
Учитывая число ступенек на единицу длины, число ступенек, которое насчитывает мальчик при движении со скоростью υ:
\[ N_{1} =S\cdot \frac{n}{l} =\frac{\upsilon \cdot l}{\upsilon +u} \cdot \frac{N}{l} =\frac{\upsilon }{\upsilon +u} \cdot N. \]
Во втором случае, двигаясь со скоростью 1,5∙υ он насчитывает:
\[ N_{1} +N_{2} =\frac{1,5\cdot \upsilon \cdot l}{1,5\cdot \upsilon +u} \cdot \frac{N}{l} =\frac{1,5\cdot \upsilon }{1,5\cdot \upsilon +u} \cdot N. \]
Таким образом, мы получили систему уравнений:
\[ \left\{\begin{array}{l} {\frac{N}{N_{1} } =1+\frac{u}{\upsilon } ,} \\ {\frac{N}{N_{1} +N_{2} } =1+\frac{1}{1,5} \cdot \frac{u}{\upsilon } .} \end{array}\right. \]
Решим систему, например, выразив отношение u/υ из первого уравнения, и подставив его во второе уравнение. После математических преобразований получим искомое число ступенек:
\[ N=N_{1} \cdot \frac{N_{1} +N_{2} }{N_{1} -2\cdot N_{2}}. \]