В2.7. Две шайбы массами m1 = m2 = 2,0 г, заряженные разноимёнными зарядами q1 = 1,0 мкКл и q2 = –1,0 мкКл, связаны нитью длиной l = 100 см. Шайбы находятся на горизонтальной поверхности, коэффициент трения скольжения по которой μ = 0,20. Чтобы система не двигалась по поверхности, к шайбам нужно приложить внешние силы, минимальный модуль которых равен …мН.
Решение: т.к. шайбы заряжены разноимённо, то они будут притяги-ваться, поэтому сила извне должна быть направлена против силы притяже-ния, что бы удерживать шайбы. Сила трения будет направлена против воз-можного движения. Пусть шайбы находятся на грани скольжения. На каж-дую шайбу действует шесть сил: mg – сила тяжести, N – сила нормальной реакции опоры, Ftr – максимальна сила трения покоя (сила трения скольжения), F – внешняя сила, Fn - сила натяжения нити и Fk – кулоновская сила притяжения. Изобразим силы (см. рис.).
Сумма этих сил должны быть равна нулю. В проекциях на систему координат, получим систему уравнений (например, для шайбы 1):
\[ \begin{align} & {{F}_{k1}}+{{F}_{n}}-{{F}_{tr}}_{1}-F=0, \\ & {{N}_{1}}-{{m}_{1}}g=0, \\ & {{F}_{tr}}_{1}=\mu \cdot {{N}_{1}}. \\ \end{align}. \]
Если считать, что внешняя сила должна быть минимальной, то в этом случае нить, связывающая шайбы, не будет натянута, т.е. Fn = 0, тогда
\[ \begin{align} & {{F}_{tr}}_{1}=\mu \cdot {{m}_{1}}g, \\ & F={{F}_{k1}}-{{F}_{tr}}_{1}=\frac{k\cdot \left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|}{{{l}^{2}}}-\mu \cdot {{m}_{1}}g. \\ \end{align} \]
Ответ: 5мН.