В2,9 Тело брошено со скоростью, модуль которой
υ0=15 м/с, вертикально вверх с высоты h=20 м относительно поверхности земли. Средняя путевая скорость за время полета составит … м/с. (11 м/с)
Решение.<υs>=S / t ,
S= H + H +h = 2⋅H + h.
Найдем H.
До верхней точки тело движется равнозамедленно с ускорением свободного падения g:
- 2⋅g⋅H = υ2 – υ02.
В верхнем положении
υ = 0:
- 2⋅g⋅H = – υ02,
H=
υ02/2g.
H = 11,25 м.
S= 2⋅11,25 м + 20 м =45 м.
Для того, чтобы найти время полета, запишем зависимость перемещения от времени и спроецируем ее на ось OY:
\[ \vec{r}=\vec{r}_{0} +\vec{\upsilon }_{0} \cdot t+\frac{g\cdot t^{2} }{2} ,\ \]
\[ y=h+\upsilon _{0} \cdot t-\frac{g\cdot t^{2} }{2} .\ \]
В момент падения y = 0.
\[ 0=h+\upsilon _{0} \cdot t-\frac{g\cdot t^{2} }{2} ,\ \]
0=20+15t-5t2.
Откуда, время полета t = 4 c.
Средняя путевая скорость тела за время полета:
<υs>=45 м / 4 с = 11,25 м/с = 11 м/с.
Ответ: 11 м/с.