В2.8 Мячик бросили с некоторой высоты h под углом α = 30° к горизонту. Чтобы мячик достиг максимальной высоты над поверхностью земли, равной 2h, и упал на землю через время t = 4,0 с после броска, модуль его начальной скорости должен составить ... м/с.
Решение. В точке А проекция скорости на ось Оу
υ0 = υ0·sinα -g·t1 = 0
Определим время
t1, за которое мячик достигнет высоты
h \[ {{t}_{1}}=\frac{{{\upsilon }_{0}}\cdot \sin \alpha }{g} \]
Высота подъема
\[ h=\frac{\upsilon _{0}^{2}\cdot {{\sin }^{2}}\alpha }{2\cdot g}\,\,\,(1) \]
Теперь рассмотрим движение мячика с высоты
2h.
\[ 2\cdot h=\frac{g\cdot t_{2}^{2}}{2};\,\,\,\,{{t}_{2}}=\sqrt{\frac{4\cdot h}{g}} \]
Общее время движения t и начальная скорость υ
0\[ \begin{align}
& t={{t}_{1}}+{{t}_{2}}=\frac{{{\upsilon }_{0}}\cdot \sin \alpha }{g}+\sqrt{\frac{4\cdot h}{g}} \\
& \,\,\,\,\,\,{{\upsilon }_{0}}=\frac{g\cdot \left( t-\sqrt{\frac{4\cdot h}{g}} \right)}{\sin \alpha } \\
\end{align} \]
С учетом (1)
\[ {{\upsilon }_{0}}=\frac{g\cdot t}{\left( \sqrt{2}+1 \right)\cdot \sin \alpha } \]
Ответ: 33 м/с