В2. Вариант 1.
Кинематический закон движения кабины лифта при её вертикальном подъёме вдоль оси Оy имеет вид y(t) = A + Bt + Ct2, где A = 2,00 м, B = 3,00 м/с, C = 1,00 м/с2. Если модуль силы сопротивления, действующей на кабину, которую поднимают с помощью троса, составляет 20% от модуля силы тяжести, а модуль силы натяжения троса, приложенной к кабине, F=8,4 кН, то масса m кабины равна … кг.
Решение: при движении на лифт действуют силы: mg – сила тяжести, направленная вертикально вниз; F – сила натяжения троса, направленная вертикально вверх; Fс – сила сопротивления (Fс = 0,2∙mg), направленная вертикально вниз. При этом тело движется с ускорением, направленным вверх, проекция которого на ось 0y равна: ay = 2С (коэффициент в кинематическом законе перед t2 равен половине ускорения). Следовательно и ось 0y направлена вверх. Определим массу, записав второй закон Ньютона в проекциях на ось 0y:
\[ \begin{array}{l} {\vec{F}+m\vec{g}+\vec{F}_{c} =m\cdot \vec{a},} \\ {F-F_{c} -mg=m\cdot a,} \\ {F=m\cdot 2C+1,2\cdot mg,} \\ {m=\frac{F}{\left(2C+1,2\cdot g\right)}.} \end{array} \]
Ответ: 600 кг.