В7 Вариант 1. В вертикальном цилиндрическом сосуде, закрытом легко-подвижным поршнем площадью поперечного сечения S = 40 см2, находилось ν = 2,0 моль идеального одноатомного газа. После того как газу медленно пере-дали количество теплоты Q = 1,49 кДж, температура газа повысилась на ΔT = 50 К, а поршень переместился на Δh = 46 см. Если сосуд находился в воздухе, атмосферное давление которого p0 = 100 кПа, то масса m поршня равна … кг.
В7 Вариант 2. В вертикальном цилиндрическом сосуде, закрытом легкоподвижным поршнем площадью поперечного сечения S = 40 см2, находилось ν = 2,0 моль идеального одноатомного газа. После того как газу медленно передали количество теплоты Q = 1,6 кДж, температура газа повысилась на ΔT = 50 К, а поршень переместился на Δh = 68 см. Если сосуд находился в воздухе, атмосферное давление которого p0 = 100 кПа, то масса m поршня равна … кг.
Решение. Процесс под легкоподвижным поршнем — это изобарный процесс.
1 способ. При изобарном процессе работа газа равна
\[A=p\cdot \Delta V=\nu \cdot R\cdot \Delta T,\]
где
\[p=p_{0} +\frac{m\cdot g}{S} ,\; \; \; \Delta V=S\cdot \Delta h.\]
Тогда
\[\begin{array}{c} {\left(p_{0} +\frac{m\cdot g}{S} \right)\cdot S\cdot \Delta h=\nu \cdot R\cdot \Delta T,\; \; \; \left(p_{0} \cdot S+m\cdot g\right)\cdot \Delta h=\nu \cdot R\cdot \Delta T,} \\ {m\cdot g=\frac{\nu \cdot R\cdot \Delta T}{\Delta h} -p_{0} \cdot S,\; \; \; m=\frac{\nu \cdot R\cdot \Delta T}{\Delta h\cdot g} -\frac{p_{0} \cdot S}{g} ,} \end{array}\]
1 Вариант: m = 141 кг.
2 Вариант: m = 82 кг.
В этом способе оказалось лишнее данное Q.
2 способ. Воспользуемся первым законом термодинамики. Количество теплоты, изменение внутренней энергии газа и работа газа при изобарном процессе связаны соотношением
\[Q=\Delta U+A.\; \; \; (1)\]
Изменение внутренней энергии идеального одноатомного газа
\[\Delta U=\frac{3}{2} \cdot \nu \cdot R\cdot \Delta T.\; \; \; (2)\]
При изобарном процессе работа газа равна
\[A=p\cdot \Delta V=\left(p_{0} +\frac{m\cdot g}{S} \right)\cdot S\cdot \Delta h=\left(p_{0} \cdot S+m\cdot g\right)\cdot \Delta h.\; \; \; (3)\]
После подстановки уравнений (2) и (3) в (1) получаем
\[\begin{array}{c} {Q=\frac{3}{2} \cdot \nu \cdot R\cdot \Delta T+\left(p_{0} \cdot S+m\cdot g\right)\cdot \Delta h,\; \; \; p_{0} \cdot S+m\cdot g=\frac{2Q-3\nu \cdot R\cdot \Delta T}{2\Delta h} ,} \\ {m=\frac{2Q-3\nu \cdot R\cdot \Delta T}{2\Delta h\cdot g} -\frac{p_{0} \cdot S}{g} ,} \end{array}\]
= 1,6 кДж
1 Вариант: m = 13 кг.
2 Вариант: m = 12 кг.
Примечание.
1. Каждый из способов дает разные ответы. Это говорит о том, что неудачно подобраны числа. Например, для изобарного процесса
\[Q=\frac{5}{2} \cdot \nu \cdot R\cdot \Delta T\]
и должно быть равным 2,078 кДж в двух вариантах.
2. Так как второй способ использует все значения условия, то авторский ответ будет совпадать со вторым способом.
3. По моему, здесь лишнее слово «медленно», т.к. «процесс медленного сжатия или расширения газа под поршнем» [Мякишев Г.Я., Физика 10, 1998 г. — С. 40] является изотермическим (там же «температура при этом меняется, но в первом приближении этим измененем можно пренебречь»). У нас температура меняется на 50 градусов.