Тест А2. 2. Из орудия в горизонтальном направлении вылетает снаряд со скоростью, модуль которой υ = 500 м/с. Если модуль силы трения
FТР =
4500 Н, масса орудия
М = 1500 кг, масса снаряда
m = 12 кг, то расстояние, на которое откатятся орудие, равно:
1) 1,3 м; 2) 1,8 м; 3) 2,7 м; 4) 3,4 м; 5) 5,5 м.
Решение. Определим скорость орудия после выстрела. Для системы снаряд орудие можно применить закон сохранения импульса. До выстрела скорость системы была равна нулю, определим начальную скорость отката орудия.
\[ \begin{align}
& (M+m)\cdot \vec{\upsilon }=M\cdot {{{\vec{\upsilon }}}_{1}}+m\cdot {{{\vec{\upsilon }}}_{2}}.\ \upsilon =0. \\
& Ox:\ 0=M\cdot {{\upsilon }_{1}}-m\cdot {{\upsilon }_{2}},\ {{\upsilon }_{1}}=\frac{m\cdot {{\upsilon }_{2}}}{M}. \\
& {{\upsilon }_{1}}=\frac{500\cdot 12}{1500}=4. \\
\end{align} \]
Определим расстояние, на которое откатится орудие используя второй закон Ньютона. Покажем силы, которые действуют на орудие после выстрела:
\[ {{\vec{F}}_{tr}}+M\cdot \vec{g}+\vec{N}=M\cdot \vec{a}. \]
Найдем проекции на ось
Ох: \
\[ Ox:{{F}_{tr}}=M\cdot a\ \ \ (1). \]
\[ \begin{align}
& {{F}_{tr}}=M\cdot a,\ a=\frac{{{\upsilon }^{2}}-\upsilon _{1}^{2}}{-2\cdot s},\ \upsilon =0,\ {{F}_{tr}}=M\cdot \frac{\upsilon _{1}^{2}}{2\cdot s}.\ s=\frac{M\cdot \upsilon _{1}^{2}}{2\cdot {{F}_{tr}}}. \\
& s=\frac{1500\cdot 4\cdot 4}{2\cdot 4500}=2,7. \\
\end{align} \]
Ответ: 3) 2,7 м.