1.11 Свободно падающее без начальной скорости тело последнюю часть пути s = 30 м преодолело за промежуток времени Δt = 1,0 с. Высота, с которой падало тело, составляет:
1) 45 м; 2) 54 м; 3) 61 м; 4) 76 м; 5) 90 м.
Решение. Направим ось Оу вертикально вниз, начало оси совместим с точкой начала движения. Тогда у0 = 0, υ0у = 0, gy = g. Тогда уравнение выражающее зависимость координаты тела от времен, будет иметь вид:
\[ y=\frac{g\cdot {{t}^{2}}}{2}\,\,\,(1) \]
Обозначим t1 – время падения тела, Δt = 1 с по условию. В момент времени t1 – Δt координата тела будет равна
\[ H-s=\frac{g\cdot {{\left( {{t}_{1}}-\Delta t \right)}^{2}}}{2}\,\,\,(2) \]
Когда тело упадет на землю, у = Н. Согласно (1)
\[ H=\frac{g\cdot t_{1}^{2}}{2}\,\,\,(3) \]
Подставим это уравнение в (2)
\[ \begin{align}
& \frac{g\cdot t_{1}^{2}}{2}-s=\frac{g\cdot {{\left( {{t}_{1}}-\Delta t \right)}^{2}}}{2}\,; \\
& \,\,\,\,\,\,\,\,\,\,{{t}_{1}}=\frac{\Delta t}{2}+\frac{s}{g\cdot \Delta t} \\
\end{align} \]
Теперь, когда известно время падения t1, на основании (3) найдем высоту, с которой падало тело
\[ H=\frac{g}{2}\cdot {{\left( \frac{\Delta t}{2}+\frac{s}{g\cdot \Delta t} \right)}^{2}} \]
Ответ: 3) 61 м;