В2.3. Два шарика массами
m1 = 22 г и
m2 = 12 г с зарядами, равными соответственно
q1 = +5,4∙10
-6 Кл и
q2 = +2,4∙10
-6 Кл, связаны нитью, перекинутой через неподвижный блок. Если вся система помещена в однородное электростатическое поле напряжённостью
E = 6,4∙10
4 В/м, силовые линии которого направлены вертикально вниз, то модуль ускорения шариков равен
… м/с2. (Взаимодействием заряженных шариков пренебречь)
Решение: на первый шарик действуют силы:
m1g – сила тяжести, направленная вниз,
T1 – сила натяжения нити,
F1 ¬– сила со стороны электростатического поля, направленная вдоль силовых линий. На второй действуют силы:
m2g – сила тяжести,
T2 – сила натяжения нити и
F2 ¬– сила со стороны электростатического поля (см. рис.) Блок будем считать невесомым, трение в блоке отсутствует, и нить можно считать невесомой, тогда:
T1 = T2 = T, a1 = a2 = a.
Запишем второй закон Ньютона для обоих шаров? Учтём что сила со стороны электростатического поля равна произведению заряда на напряжённость:
\[ \begin{array}{l} {\vec{T}+m_{1} \vec{g}+\vec{F}_{1} =m_{1} \cdot \vec{a},} \\ {\vec{T}+m_{2} \vec{g}+\vec{F}_{2} =m_{2} \cdot \vec{a}.} \end{array} \]
Спроецируем полученные уравнения на выбранную систему отсчёта:
\[ \begin{array}{l} {T-m_{1} g-q_{1} \cdot E=-m_{1} \cdot a,} \\ {T-m_{2} g-q_{2} \cdot E=m_{2} \cdot a.} \end{array} \]
Т.к. нас интересует только ускорение, то вычтем из второго первое уравнение, чтобы избавится от силы натяжения нити:
\[ \begin{array}{l} {T-m_{2} g-q_{2} \cdot E-T+m_{1} g+q_{1} \cdot E=m_{2} \cdot a+m_{1} \cdot a,} \\ {-m_{2} g-q_{2} \cdot E+m_{1} g+q_{1} \cdot E=m_{2} \cdot a+m_{1} \cdot a,} \\ {g\cdot \left(m_{1} -m_{2} \right)+E\cdot \left(q_{1} -q_{2} \right)=a\cdot \left(m_{2} +m_{1} \right),} \\ {a=g\cdot \left(\frac{m_{1} -m_{2}}{m_{1} +m_{2}} \right)+E\cdot \left(\frac{q_{1} -q_{2}}{m_{1} +m_{2}} \right).} \end{array} \]
Ответ: 8,6 м/с
2.