А4 вариант 1 Период обращения космического корабля вокруг некоторой планеты по круговой орбите вблизи ее поверхности Т = 88 мин. Средняя плотность <ρ>вещества планеты равна:
1) 6,4·103 кг/м3; 2) 5,1 ·103 кг/м3; 3) 4,6 ·103 кг/м3; 4) 3,9·103 кг/м3; 5) 3,2·103 кг/м3;
Решение. Космический корабль притягивается к планете с силой F
\[ F=G\cdot \frac{M\cdot m}{{{R}^{2}}} \]
Эта же сила сообщает ему центростремительное ускорение. Согласно второму закону Ньютона
\[ \begin{align}
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m\cdot \frac{{{\upsilon }^{2}}}{R}=G\cdot \frac{M\cdot m}{{{R}^{2}}};\, \\
& {{\upsilon }^{2}}=G\cdot \frac{M}{R}=G\cdot \frac{<\rho >\cdot V}{R}=\frac{G\cdot <\rho >\cdot \frac{4}{3}\cdot \pi \cdot {{R}^{3}}}{R} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\upsilon }^{2}}=G\cdot <\rho >\cdot \frac{4}{3}\cdot \pi \cdot {{R}^{2}} \\
\end{align} \]
При движении по окружности линейная скорость движения и период связаны следующим соотношением
\[ \upsilon =\frac{2\cdot \pi \cdot R}{T} \]
Тогда
\[ \begin{align}
& \frac{4\cdot {{\pi }^{2}}\cdot {{R}^{2}}}{{{T}^{2}}}=G\cdot <\rho >\cdot \frac{4}{3}\cdot \pi \cdot {{R}^{2}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,<\rho >=\frac{3\cdot \pi }{G\cdot {{T}^{2}}} \\
\end{align} \]
Ответ: 2) 5,1 ·103 кг/м3