Автор Тема: Два круговых витка  (Прочитано 27495 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Два круговых витка
« : 01 Сентября 2014, 23:35 »
Два круговых витка радиусом 4 см каждый расположены в параллельных плоскостях на расстоянии 5 см друг or друга. По виткам текут токи I1=I2=4 А. Найти индукцию магнитного поля в центре одного из витков. Задачу решить для случаев: 1) токи в витках текут в одном направлении; 2) токи текут в противоположных направлениях (среда - воздух)
« Последнее редактирование: 06 Сентября 2014, 08:36 от Виктор »

Оффлайн Виктор

  • Ветеран
  • *****
  • Сообщений: 526
  • Рейтинг: +0/-0
  • сделать можно многое, но времени так мало...
Re: Два круговых витка
« Ответ #1 : 06 Сентября 2014, 08:39 »
Решение:
 На рисунке 1 показано направление векторов магнитной индукции полей, созданных каждым витком, если токи текут в одном направлении, на рис. 2  - если в противоположных направлениях. (Направление магнитной индукции кругового тока определяется по правилу правого винта). Индукция магнитного поля на оси кругового витка с током определяется по формуле
\[ B=\frac{\mu _{0} }{2} \cdot \frac{I\cdot R^{2} }{\left(R^{2} +r^{2} \right)^{\frac{3}{2}}}, \]
здесь  μ0 = 4π∙10-7 Гн/м – магнитная постоянная, I = 4 А – сила тока в витках, R = 4 см – радиус кольца,  r1 = 5 см – расстояние от первого витка до точки поля, r2 =0 – расстояние от второго витка до точки поля на оси. Как видно из рисунка 1, результирующая индукция магнитного поля в первом случае будет равна
\[ B=B_{1} +B_{2} =\frac{\mu _{0}}{2} \cdot \frac{I_{1} \cdot R^{2} }{\left(R^{2} +r_{1}^{2} \right)^{\frac{3}{2}}} +\frac{\mu _{0}}{2} \cdot \frac{I_{2} \cdot R^{2} }{\left(R^{2} +r_{2}^{2} \right)^{\frac{3}{2} } } =\frac{\mu _{0} \cdot I\cdot R^{2}}{2} \cdot \left(\frac{1}{\left(R^{2} +r_{1}^{2} \right)^{\frac{3}{2}}} +\frac{1}{R^{3}} \right). \]
Во втором случае (см. рис. 2)
\[ B=B_{2} -B_{1} =\frac{\mu _{0}}{2} \cdot \frac{I_{2} \cdot R^{2} }{\left(R^{2} +r_{2}^{2} \right)^{\frac{3}{2}}} -\frac{\mu _{0} }{2} \cdot \frac{I_{1} \cdot R^{2} }{\left(R^{2} +r_{1}^{2} \right)^{\frac{3}{2}}} =\frac{\mu _{0} \cdot I\cdot R^{2}}{2} \cdot \left(\frac{1}{R^{3}} -\frac{1}{\left(R^{2} +r_{1}^{2} \right)^{\frac{3}{2}}} \right). \]
Ответ: 1) 78,1 мкТл;  2) 47,5 мкТл.
« Последнее редактирование: 23 Сентября 2014, 17:13 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24