Решение: Пусть I0 интенсивность излучения на поверхности облучаемой среды, I - интенсивность после прохождения слоя толщиной х сантиметров, μ - линейный коэффициент ослабления, измеряемый в см–1. Для однородной среды ослабление узкого пучка фотонов происходит по экспоненциальному закону Бугера (закон ослабления излучения):
\[ I=I_{0} \cdot e^{-\mu \cdot x}. \]
По условию: для чугуна – k1 = I01/I1 =10, искомое ослабление для свинца – k2 = I02/I2 . Таким образом, для чугуна:
\[ \begin{array}{l} {k_{1} =\frac{I_{01}}{I_{1}} =e^{\mu _{1} \cdot x} ,{\rm \; \; \; \; \; \; \; }\ln k_{1} =\ln e^{\mu _{1} \cdot x},} \\ {\ln k_{1} =\mu _{1} \cdot x,{\rm \; \; \; \; \; \; }x=\frac{\ln k_{1}}{\mu _{1}}.} \end{array} \]
для свинца:
\[ \begin{array}{l} {k_{2} =e^{\mu _{2} \cdot x} ,{\rm \; \; \; \; \; \; }k_{2} =e^{\mu _{2} \cdot \frac{\ln k_{1}}{\mu _{1}}},} \\ {k_{2} =k_{1} \cdot e^{\frac{\mu _{2}}{\mu _{1}}}.} \end{array} \]
Ответ: 58,66 = 59 раз.