Решение В12 (динамический способ).
...
Под действием силы тяжести проводник начнет двигаться вниз. В движущемся в магнитном поле проводнике возникает ЭДС индукции E
i. Это приведет к появлению индукционного тока
Ii, и конденсатор начнет заряжаться. Если пренебречь сопротивлением перемычки и реек, то напряжение на конденсаторе в любой момент времени равно ЭДС индукции
\[\begin{array}{c} {E_{i} =\frac{\Delta q}{C} ,\; \; \; \upsilon \cdot B\cdot l=\frac{\Delta q}{C} ,\; \; \; (1)} \\ {\upsilon \cdot B\cdot l=\frac{I\cdot \Delta t}{C} ,\; \; \; C\cdot a\cdot B\cdot l=I\; \; \; (2)} \end{array}\]
(учли формулу для расчета ЭДС индукции движущегося проводника, определения силы тока и ускорения, и α = 90°).
Наличие тока
I в перемычке приведет к появлению силы Ампера. Таким образом, на проводник в любой момент времени действуют две силы: сила тяжести (
m∙g) и сила Ампера (
FA) (рис.). Запишем второй закон Ньютона с учетом уравнения (2) и найдем ускорение перемычки:
\[\begin{array}{c} {0Y:\; \; \; \; m\cdot a=m\cdot g-F_{A} =m\cdot g-I\cdot B\cdot l=m\cdot g-C\cdot a\cdot B^{2} \cdot l^{2} ,} \\{}\\ {a=\frac{m\cdot g}{m+C\cdot B^{2} \cdot l^{2} } .\; \; \; (3)} \end{array}\]
Из уравнения (3) следует, что перемычка будет двигаться с постоянным ускорением, следовательно, скорость перемычки будет изменяться линейно.
!!!Но, тогда из уравнения (2) следует, что и сила тока не изменяется - а это не возможно (в начальный момент времени сила тока равнялась нулю).
Заряд на конденсаторе в момент времени Δ
t1 найдем из уравнения (1):
\[\Delta q_{1} \; =\upsilon _{1} \cdot B\cdot l\cdot C=a\cdot \Delta t_{1} \cdot B\cdot l\cdot C=\frac{m\cdot g\cdot \Delta t_{1} \cdot B\cdot l\cdot C}{m+C\cdot B^{2} \cdot l^{2} } .\]