Автор Тема: Найти индукцию магнитного поля в точке A  (Прочитано 9964 раз)

0 Пользователей и 3 Гостей просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
На рисунке показана схема разветвления токов. Все проводники прямолинейны, бесконечны и лежат в одной плоскости. Найти индукцию магнитного поля в точке A, лежащей на перпендикуляре, проходящем через точку разветвления, на расстоянии 40 см от плоскости проводников.

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Re: Найти индукцию магнитного поля в точке A
« Ответ #1 : 07 Января 2015, 11:35 »
Решение.
Для решения задачи используем закон Био -  Савара -  Лапласа. Индукция магнитного поля в произвольной точке А, созданного отрезком проводника с током конечной длины,
\[ B=\frac{{{\mu }_{0}}\cdot I}{4\cdot \pi \cdot R}\cdot (\cos {{\alpha }_{1}}-\cos {{\alpha }_{2}})\ \ \ (1). \]
Где: R - расстояние от т. А до проводника; – α1 и α2 углы, образованные радиус-вектором, проведенном в т. А соответственно из начала и конца проводника, с направлением тока.
μ0 = 4∙π∙10-7 Гн/м – магнитная постоянная.
α2 = 900, α1 = 00.
По формуле (1) определим индукцию создаваемую токами I0, I1 и I2.В0 = 12,5∙10-7 Тл, В1 = 10,0∙10-7 Тл, В2 = 2,5∙10-7 Тл.
Покажем на рисунке направление векторов магнитной индукции создаваемые токами I0, I1 и I2.
По теореме Пифагора определим результирующую индукцию В12 и В.
\[ {{B}_{12}}=\sqrt{B_{1}^{2}+B_{2}^{2}},\ B=\sqrt{B_{0}^{2}+B_{12}^{2}}. \]
В12 = 10,3∙10-7 Тл, В = 16,2∙10-7 Тл.
Ответ: 16,2∙10-7 Тл.
« Последнее редактирование: 29 Января 2015, 06:26 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24