Решение.
Водолаз будет видеть предметы если угол падения световых лучей на поверхность воды равен или больше угла полного внутреннего отражения. Покажем рисунок. Запишем условие полного внутреннего отражения:
\[ \sin \alpha =\frac{1}{n}\ \ \ \ (1). \]
Где:
n = 1,33,
n – абсолютный показатель преломления воды.
Н = ВС, L = ВМ, l = ВА, h = АО.\[ \begin{align}
& L-l=h\cdot tg\alpha \ \ \ (1), \\
& l=(h-H)\cdot tg\alpha \ \ \ (2), \\
& tg\alpha =\frac{\sin \alpha }{\cos \alpha }=\frac{1}{\sqrt{{{n}^{2}}-1}}\ \ \ (3). \\
\end{align} \]
(3) и (2) подставим в (1) выразим на какой глубине находится водолаз.
\[ \begin{align}
& L-(h-H)\cdot tg\alpha =h\cdot tg\alpha ,\ h=\frac{L+H\cdot tg\alpha }{2\cdot tg\alpha }, \\
& h=\frac{L+H\cdot \frac{1}{\sqrt{{{n}^{2}}-1}}}{2\cdot \frac{1}{\sqrt{{{n}^{2}}-1}}}. \\
\end{align}
\]
h = 7,48 м.