Решение.
Покажем рисунок. Определим оптическую разность хода для интерференции отраженных лучей 1 и 2,
n2 = 2,5,n1 = 1,0.
\[ \begin{align}
& \delta ={{n}_{2}}\cdot (AO+OC)-{{n}_{1}}\cdot BC,\ BC=AC\cdot \sin \alpha ,\ AC=2\cdot AD=2\cdot d\cdot tg\beta , \\
& BC=2\cdot d\cdot tg\beta \cdot \sin \alpha ,(AO+OC)=\frac{2\cdot d}{\cos \beta },\ \frac{\sin \alpha }{\sin \beta }=\frac{{{n}_{2}}}{{{n}_{1}}},\ \sin \beta =\frac{{{n}_{1}}}{{{n}_{2}}}\cdot \sin \alpha , \\
& \cos \beta =\sqrt{1-{{\sin }^{2}}\beta },\delta =\frac{2\cdot d\cdot {{n}_{2}}}{\cos \beta }-{{n}_{1}}\cdot 2\cdot d\cdot tg\beta \cdot \sin \alpha . \\
\end{align} \]
\[ \begin{align}
& \delta =\frac{2\cdot d\cdot {{n}_{2}}}{\cos \beta }-{{n}_{1}}\cdot 2\cdot d\cdot tg\beta \cdot \sin \alpha =2\cdot d\cdot (\frac{{{n}_{2}}-{{n}_{1}}\cdot \frac{\sin \beta }{\cos \beta }\cdot \sin \alpha \cdot \cos \beta }{\cos \beta })= \\
& =2\cdot d\cdot (\frac{{{n}_{2}}-{{n}_{1}}\cdot \sin \beta \cdot \sin \alpha }{\cos \beta })=2\cdot d\cdot (\frac{{{n}_{2}}-{{n}_{1}}\cdot \frac{{{n}_{1}}}{{{n}_{2}}}\cdot {{\sin }^{2}}\alpha }{\sqrt{1-\frac{n_{1}^{2}}{n_{2}^{2}}\cdot {{\sin }^{2}}\alpha }})=2\cdot d\cdot (\frac{n_{2}^{2}-n_{1}^{2}\cdot {{\sin }^{2}}\alpha }{\sqrt{n_{2}^{2}-n_{1}^{2}\cdot {{\sin }^{2}}\alpha }}). \\
& \delta =2\cdot d\cdot \sqrt{{{n}_{2}}^{2}-n_{1}^{2}\cdot si{{n}^{2}}\alpha }\ \ \ (1). \\
\end{align} \]
Отражённый от неё свет максимально ослаблен вследствие интерференции. Запишем условие минимума:
\[ \delta =(2\cdot k+1)\cdot \frac{\lambda }{2}\ \ \ (2). \]
Подставим (2) в (1) выразим толщину защитного покрытия самолета:
\[ (2\cdot k+1)\cdot \frac{\lambda }{2}=2\cdot d\cdot \sqrt{n_{2}^{2}-n_{1}^{2}\cdot {{\sin }^{2}}\alpha }\ ,\ d=\frac{(2\cdot k+1)\cdot \frac{\lambda }{2}}{2\cdot \sqrt{n_{2}^{2}-n_{1}^{2}\cdot {{\sin }^{2}}\alpha }}\ \ \ \ (3). \]
Учитываем, что электромагнитные волны падают нормально: α = 0°, минимальная толщина защитного покрытия будет при условии
k = 0.
\[ d=\frac{\frac{\lambda }{2}}{2\cdot \sqrt{n_{2}^{2}}}=\frac{\lambda }{4\cdot {{n}_{2}}}\ \ \ \ (4). \]
d = 4,0∙10
-3 м.