Решение.
\[ \begin{align}
& dQ={{I}^{2}}\cdot Rdt,\ I=k\cdot t,\ k=\frac{{{I}_{\max }}-{{I}_{0}}}{\tau },\ \\
& Q=\int{dQ=\int\limits_{0}^{\tau }{{{k}^{2}}}}\cdot R\cdot {{t}^{2}}dt=\frac{1}{3}\cdot {{k}^{2}}\cdot R\cdot {{\tau }^{3}},Q=\frac{1}{3}\cdot {{(\frac{{{I}_{\max }}-{{I}_{0}}}{\tau })}^{2}}\cdot R\cdot {{\tau }^{3}},\ \\
& Q=\frac{1}{3}\cdot {{({{I}_{\max }}-{{I}_{0}})}^{2}}\cdot R\cdot \tau ,\ R=\frac{Q}{\frac{1}{3}\cdot {{({{I}_{\max }}-{{I}_{0}})}^{2}}\cdot \tau },\ R=\frac{3\cdot Q}{{{({{I}_{\max }}-{{I}_{0}})}^{2}}\cdot \tau }. \\
\end{align} \]
R = 150 Ом.