А6. Вариант 1. В два вертикальных сообщающихся сосуда, площади поперечных сечений которых отличаются в
n = 2 раза, а высоты одинаковы налита ртуть (ρ
1 = 13,6 г/см
3) так, что до верхних краёв сосудов остаётся расстояние
l = 30 см. Если широкий сосуд доверху заполнить водой (ρ
2 = 1,0 г/см
3), то разность ∆
h уровней ртути в сосудах будет равна:
1) 22,6 мм; 2) 24,8 мм; 3) 26,6 мм; 4) 28,7 мм; 5) 30,4 мм.
Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны). Покажем рисунок. 1 и 2 первоначальный уровень ртути.
рА = рВ (1), pА = ρ2⋅g⋅(l+h1 ) (2), pВ = ρ2⋅g⋅(h2 + h1) (3).
\[ \begin{align}
& \Delta h={{h}_{1}}+{{h}_{2}}\ \ \ (4),\ {{V}_{1}}={{V}_{2}}\ ,\ {{S}_{1}}\cdot {{h}_{1}}={{S}_{2}}\cdot {{h}_{2}},\ {{h}_{2}}=\frac{{{S}_{1}}\cdot {{h}_{1}}}{{{S}_{2}}},\ \frac{{{S}_{1}}}{{{S}_{2}}}=2. \\
& {{\rho }_{1}}\cdot g\cdot ({{h}_{1}}+{{h}_{2}})={{\rho }_{2}}\cdot g\cdot (l+{{h}_{1}}),\ {{\rho }_{1}}\cdot {{h}_{1}}+{{\rho }_{1}}\cdot \frac{{{S}_{1}}\cdot {{h}_{1}}}{{{S}_{2}}}-{{\rho }_{2}}\cdot {{h}_{1}}={{\rho }_{2}}\cdot l, \\
& {{h}_{1}}=\frac{{{\rho }_{2}}\cdot l}{{{\rho }_{1}}+{{\rho }_{1}}\cdot \frac{{{S}_{1}}}{{{S}_{2}}}-{{\rho }_{2}}},\ {{h}_{2}}=\frac{{{S}_{1}}}{{{S}_{2}}}\cdot \frac{{{\rho }_{2}}\cdot l}{{{\rho }_{1}}+{{\rho }_{1}}\cdot \frac{{{S}_{1}}}{{{S}_{2}}}-{{\rho }_{2}}},\ \\
& \Delta h=\frac{{{S}_{1}}}{{{S}_{2}}}\cdot \frac{{{\rho }_{2}}\cdot l}{{{\rho }_{1}}+{{\rho }_{1}}\cdot \frac{{{S}_{1}}}{{{S}_{2}}}-{{\rho }_{2}}}+\frac{{{\rho }_{2}}\cdot l}{{{\rho }_{1}}+{{\rho }_{1}}\cdot \frac{{{S}_{1}}}{{{S}_{2}}}-{{\rho }_{2}}}=\frac{{{\rho }_{2}}\cdot l}{{{\rho }_{1}}+{{\rho }_{1}}\cdot \frac{{{S}_{1}}}{{{S}_{2}}}-{{\rho }_{2}}}\cdot (\frac{{{S}_{1}}}{{{S}_{2}}}+1). \\
\end{align} \]
\[ \Delta h=\frac{{{10}^{3}}\cdot 0,3}{13,6\cdot {{10}^{3}}+13,6\cdot {{10}^{3}}\cdot 2-{{10}^{3}}}\cdot (2+1)=\frac{0,9}{39,8}=0,0226. \]
∆h = 0,0226 м = 22,6 мм.
Ответ: 1) 22,6 мм.