Решение:
Скорость понижения уровня глицерина в сосуде зависит от скорости протекания глицерина через капилляр. Объем глицерина, протекающего за время t через капилляр определяется формулой Пуазейля \[ V=\frac{\pi {{r}^{4}}t\Delta P}{8l\eta }.(1) \]
Разность давлений на концах капилляра обусловлена гидростати¬ческим давлением слоя жидкости, т. е. \[ \Delta P=\rho gh.(2) \]
С другой стороны,\[ V=S\upsilon t=\pi {{r}^{2}}\upsilon t,(3) \]
где υ - скорость протекания глицерина через капилляр. Из (1) - (3) имеем \[ \upsilon =\frac{V}{\pi {{r}^{2}}t}=\frac{\pi {{r}^{4}}t\Delta P}{8l\eta }\cdot \frac{1}{\pi {{r}^{2}}t}=\frac{{{r}^{2}}\rho gh}{8l\eta }. \]
Время вытекания объема V глицерина \[ t=\frac{V}{\pi {{r}^{2}}\upsilon }=\frac{8Vl\eta }{\pi {{r}^{2}}{{r}^{2}}\rho gh}=\frac{8\cdot 5\cdot {{10}^{-6}}\cdot 1,5\cdot {{10}^{-2}}\cdot 1}{3,14\cdot {{(1\cdot {{10}^{-3}})}^{4}}\cdot 1,2\cdot {{10}^{3}}\cdot 10\cdot 0,18}\approx 90c. \]
Ответ: 1,5мин.