Автор Тема: У какого водородоподобного атома серия Пашена будет содержать видимый свет?  (Прочитано 9057 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
3. У какого водородоподобного атома серия Пашена будет содержать видимый свет? Найти интервал длин волн. Сделать рисунок.

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Решение.
Для водородоподобных ионов справедлива формула Бальмера для определения длины волны:
\[ \begin{align}
  & \nu =c\cdot R\cdot {{Z}^{2}}\cdot (\frac{1}{{{m}^{2}}}-\frac{1}{{{n}^{2}}}),\ \nu =\frac{c}{\lambda }, \\
 & \frac{1}{{{\lambda }_{nm}}}=R\cdot {{Z}^{2}}\cdot (\frac{1}{{{m}^{2}}}-\frac{1}{{{n}^{2}}}),\ {{\lambda }_{nm}}=\frac{1}{R\cdot {{Z}^{2}}\cdot (\frac{1}{{{m}^{2}}}-\frac{1}{{{n}^{2}}})}\ \ (1).\lambda =\frac{{{m}^{2}}\cdot {{n}^{2}}}{R\cdot {{Z}^{2}}\cdot ({{n}^{2}}-{{m}^{2}})}(2). \\
\end{align}
 \]
В серии Пашена электрон переходит на третий энергетический уровень, m = 3.
Для определения максимальной длины волны n = 4,5,6,7...
с = 3∙108 м/с, с – скорость света, R – постоянная Ридберга,
R = 1,097737∙107 м-1.
Z - порядковый номер водородоподобного атома, Z = 2,3,4...
Длины волн видимого света имеют границы:
3,9∙10-7 м < λ < 8,0∙10-7 м.
\[ \begin{align}
  & Z=2.n=4. \\
 & \lambda =\frac{{{4}^{2}}\cdot {{3}^{2}}}{1,097737\cdot {{10}^{7}}\cdot {{2}^{2}}\cdot ({{4}^{2}}-{{3}^{2}})}=4,68\cdot {{10}^{-7}}. \\
 & Z=2.n=5. \\
 & \lambda =\frac{{{5}^{2}}\cdot {{3}^{2}}}{1,097737\cdot {{10}^{7}}\cdot {{2}^{2}}\cdot ({{5}^{2}}-{{3}^{2}})}=3,2\cdot {{10}^{-7}}. \\
 & Z=3.n=4. \\
 & \lambda =\frac{{{4}^{2}}\cdot {{3}^{2}}}{1,097737\cdot {{10}^{7}}\cdot {{3}^{2}}\cdot ({{4}^{2}}-{{3}^{2}})}=2,08\cdot {{10}^{-7}}. \\
\end{align} \]
Ответ: Z = 2, Гелий, λ = 4,68∙10-7 м.
« Последнее редактирование: 05 Октября 2016, 07:09 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24