В 3. Вариант 1.Шайба, модуль начальной скорости которой υ
0 = 12 м/с, прошла до удара о борт хоккейной площадки путь
s1 = 25 м. Модуль скорости шайбы сразу после удара о борт не изменился. Если коэффициента трения скольжения между шайбой и горизонтальной поверхностью льда μ = 0,12, то путь
s2, пройденный шайбой после удара о борт до остановки, равен … м.
Решение.
Определим скорость шайбы в момент удара о борт хоккейной площадки. Покажем силы которые действуют на шайбу и ускорение. Запишем второй закон Ньютона.
\[ \vec{F}=m\cdot \vec{a},\ m\cdot \vec{g}+\vec{N}+{{\vec{F}}_{TR}}=m\cdot \vec{a}. \]
Найдем проекции на ось
Ох и Оу, учитываем, что скорость шайбы уменьшается:
\[ \begin{align}
& Ox:\ {{F}_{TR}}=m\cdot a(1),\, \\
& Oy:-m\cdot g+N=0,N=m\cdot g(2), \\
& {{F}_{TR}}=\mu \cdot N(3), \\
& {{s}_{1}}=\frac{\upsilon _{1}^{2}-\upsilon _{0}^{2}}{-2\cdot a}(4). \\
\end{align} \]
(2) подставим в (3), (3) подставим в (1), из (4) выразим ускорение и подставим в (1) определим скорость шайбы в момент удара о борт хоккейной площадки.
\[ a=\frac{\upsilon _{1}^{2}-\upsilon _{0}^{2}}{-2\cdot {{s}_{1}}},\mu \cdot m\cdot g=m\cdot \frac{\upsilon _{1}^{2}-\upsilon _{0}^{2}}{-2\cdot {{s}_{1}}},\mu \cdot g=\frac{\upsilon _{1}^{2}-\upsilon _{0}^{2}}{-2\cdot {{s}_{1}}},{{\upsilon }_{1}}=\sqrt{\upsilon _{0}^{2}-2\cdot \mu \cdot g\cdot {{s}_{1}}}(5).
\]
Определим путь пройденный шайбой после удара о борт до остановки. Покажем силы которые действуют на шайбу и ускорение. Запишем второй закон Ньютона.
\[ \vec{F}=m\cdot \vec{a},\ m\cdot \vec{g}+\vec{N}+{{\vec{F}}_{TR}}=m\cdot \vec{a}.
\]
Найдем проекции на ось
Ох и Оу, учитываем, что скорость шайбы уменьшается до остановки υ = 0:
\[ \begin{align}
& Ox:\ {{F}_{TR}}=m\cdot a(6),\, \\
& Oy:-m\cdot g+N=0,N=m\cdot g(7), \\
& {{F}_{TR}}=\mu \cdot N(8), \\
& s=\frac{-\upsilon _{02}^{2}}{-2\cdot a},s=\frac{\upsilon _{02}^{2}}{2\cdot a},{{\upsilon }_{02}}={{\upsilon }_{1}},{{\upsilon }_{02}}=\sqrt{\upsilon _{0}^{2}-2\cdot \mu \cdot g\cdot {{s}_{1}}},\,s=\frac{\upsilon _{0}^{2}-2\cdot \mu \cdot {{s}_{1}}\cdot g}{2\cdot a}(9). \\
\end{align} \]
(7) подставим в (8 ), (8 ) подставим в (6), из (9) выразим ускорение и подставим в (6) определим путь пройденный шайбой после удара о борт до остановки.
\[ \begin{align}
& a=\frac{\upsilon _{0}^{2}-2\cdot \mu \cdot {{s}_{1}}\cdot g}{2\cdot s},\mu \cdot m\cdot g=m\cdot \frac{\upsilon _{0}^{2}-2\cdot \mu \cdot {{s}_{1}}\cdot g}{2\cdot s},\mu \cdot g=\frac{\upsilon _{0}^{2}-2\cdot \mu \cdot {{s}_{1}}\cdot g}{2\cdot s}, \\
& s=\frac{\upsilon _{0}^{2}-2\cdot \mu \cdot {{s}_{1}}\cdot g}{2\cdot \mu \cdot g}(10). \\
& s=\frac{{{12}^{2}}-2\cdot 0,12\cdot 10\cdot 25}{2\cdot 0,12\cdot 10}=35. \\
\end{align} \]
Ответ: 35 м. Вариант 2. Ответ: 32 м.