В 9. Вариант 1. Два маленьких одинаковых шарика (ρ
1 = 1,54∙10
3 кг/м
3) подвесили в воздухе на непроводящих лёгких нерастяжимых нитях равной длины, закреплённых в одной общей точке. После того как шарикам сообщили одинаковые одноимённые заряды, нити разошлись на некоторый угол. Если при полном погружении шариков в масло диэлектрическая проницаемость которого ε = 2,2, угол расхождения нитей не изменился, то плотность ρ масла равна … кг/м
3.
Решение.
1). Рассмотрим случай когда шарики находятся в воздухе (рис 1).
Покажем силы, которые действуют на один из шариков. Шарик находится в покое, значит, равнодействующая всех сил равна нулю.
\[ {{\vec{F}}_{n}}+{{\vec{F}}_{K}}+m\cdot \vec{g}=0. \]
Найдем проекции на оси
Ох и
Оу:
\[ Ox:{{F}_{n}}\cdot \sin \alpha -{{F}_{K}}=0\ \ \ (1),Oy:{{F}_{n}}\cdot \cos \alpha -m\cdot g=0\ \ \ (2),{{F}_{K}}=\frac{k\cdot {{q}^{2}}}{{{r}^{2}}}\ \ \ (3).
\]
(3) подставим в (1) из (1) выразим
Fn, подставим в (2) и выразим тангенс угла отклонения нити в воздухе:
\[ \begin{align}
& {{F}_{n}}=\frac{k\cdot {{q}^{2}}}{{{r}^{2}}\cdot \sin \alpha }\ \ (4),\frac{k\cdot {{q}^{2}}\cdot \cos \alpha }{{{r}^{2}}\cdot \sin \alpha }=m\cdot g,tg\alpha =\frac{k\cdot {{q}^{2}}}{{{r}^{2}}\cdot m\cdot g}(5). \\
& m={{\rho }_{1}}\cdot V,tg\alpha =\frac{k\cdot {{q}^{2}}}{{{r}^{2}}\cdot {{\rho }_{1}}\cdot V\cdot g}(6). \\
\end{align} \]
2). Рассмотрим случай когда шарики находятся в масле (рис 2).
Покажем силы, которые действуют на один из шариков. Шарик находится в покое, значит, равнодействующая всех сил равна нулю.
\[ {{\vec{F}}_{n}}+{{\vec{F}}_{K}}+m\cdot \vec{g}+{{\vec{F}}_{A}}=0. \]
Найдем проекции на оси
Ох и
Оу:
\[ \begin{align}
& Ox:{{F}_{n}}\cdot \sin \alpha -{{F}_{K}}=0\ \ \ (7),Oy:{{F}_{A}}+{{F}_{n}}\cdot \cos \alpha -m\cdot g=0\ \ \ (8),{{F}_{K}}=\frac{k\cdot {{q}^{2}}}{\varepsilon \cdot {{r}^{2}}}\ \ \ (9). \\
& {{F}_{A}}={{\rho }_{M}}\cdot g\cdot V(10). \\
\end{align} \]
(9) подставим в (7) из (7) выразим
Fn, подставим в (2) и выразим тангенс угла отклонения нити в масле:
\[ \begin{align}
& {{F}_{n}}=\frac{k\cdot {{q}^{2}}}{\varepsilon \cdot {{r}^{2}}\cdot \sin \alpha }\ \ (11),{{\rho }_{M}}\cdot g\cdot V+\frac{k\cdot {{q}^{2}}\cdot \cos \alpha }{\varepsilon \cdot {{r}^{2}}\cdot \sin \alpha }=m\cdot g,m={{\rho }_{1}}\cdot V, \\
& \frac{k\cdot {{q}^{2}}\cdot \cos \alpha }{\varepsilon \cdot {{r}^{2}}\cdot \sin \alpha }={{\rho }_{1}}\cdot V\cdot g-{{\rho }_{M}}\cdot g\cdot V,tg\alpha =\frac{k\cdot {{q}^{2}}}{\varepsilon \cdot {{r}^{2}}\cdot ({{\rho }_{1}}\cdot V\cdot g-{{\rho }_{M}}\cdot g\cdot V)}(12). \\
\end{align} \]
Приравняем (6) и (12) выразим плотность масла.
\[ \begin{align}
& \frac{k\cdot {{q}^{2}}}{{{r}^{2}}\cdot {{\rho }_{1}}\cdot V\cdot g}=\frac{k\cdot {{q}^{2}}}{\varepsilon \cdot {{r}^{2}}\cdot ({{\rho }_{1}}\cdot V\cdot g-{{\rho }_{M}}\cdot g\cdot V)},\frac{1}{{{\rho }_{1}}}=\frac{1}{\varepsilon \cdot ({{\rho }_{1}}-{{\rho }_{M}})},\varepsilon \cdot {{\rho }_{1}}-\varepsilon \cdot {{\rho }_{M}}={{\rho }_{1}}, \\
& \varepsilon \cdot {{\rho }_{M}}=\varepsilon \cdot {{\rho }_{1}}-{{\rho }_{1}},{{\rho }_{M}}=\frac{{{\rho }_{1}}\cdot (\varepsilon -1)}{\varepsilon }(14).{{\rho }_{M}}=\frac{1540\cdot (2,2-1)}{2,2}=840. \\
\end{align} \]
Ответ: 840 кг/м
3. Вариант 2. Ответ: 800 кг/м
3.