В12 Вариант 9. В электрической цепи, схема которой представлена на рисунке, емкости конденсаторов С1 = 150 мкФ, С2 = 50 мкФ, ЭДС источника тока Е = 75,0 В. Сопротивление резистора R2 в два раза больше, чем сопротивление резистора R1, т.е. R2 = 2R1. В начальный момент времени ключ К замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа К в резисторе R2 выделится количество теплоты Q2, равное … мДж.
Решение. Задачу решим через закон сохранения энергии.
1) Найдем энергию конденсаторов в положении, когда ключ замкнут.
Ток будет идти только через резисторы, которые соединены в этом случае последовательно. Напряжения на конденсаторах равны напряжению на резисторах, параллельных им (учтем, что токи на резисторах равны I1 = I2 = I):
\[U_{1} =I\cdot R_{1} =\frac{E}{R_{1} +R_{2} } \cdot R_{1} =\frac{E}{3R_{1} } \cdot R_{1} =\frac{E}{3} =25\; B,\; \; U_{2} =I\cdot R_{2} =\frac{2E}{3} =50\; B.\]
Тогда
\[W_{11} =\frac{C_{1} \cdot U_{1}^{2} }{2} ,\; \; W_{21} =\frac{C_{2} \cdot U_{2}^{2} }{2} .\]
Заряд на первом конденсаторе был
\[q_{11} =C_{1} \cdot U_{1} ,\; \; q_{11} =0,00375.\]
2) Найдем энергию конденсаторов в положении, когда ключ разомкнут.
Ток через некоторое время в цепи прекратится (когда произойдет перезарядка конденсаторов), напряжение на резисторе R2 и на конденсаторе C2 станет равным нулю (второй конденсатор полностью разрядится), напряжение на первом конденсаторе C1 = E (ЭДС). Тогда
\[W_{12} =\frac{C_{1} \cdot E^{2} }{2} ,\; \; W_{22} =0.\]
Заряд на первом конденсаторе станет
\[q_{12} =C_{1} \cdot E,\; \; q_{12} =0,01125.\]
Заряд на первом конденсаторе увеличился. Его он получил от источника тока. Работа источника в этом случае будет равна
\[A=E\cdot \left(q_{12} -q_{11} \right).\]
Запишем закон сохранения энергии с учетом работы источника тока и потерь энергии на втором резисторе:
\[W_{11} +W_{21} +A=W_{12} +Q,\; \; Q=W_{11} +W_{21} +A-W_{12} =\]
\[=\frac{C_{1} \cdot U_{1}^{2} }{2} +\frac{C_{2} \cdot U_{2}^{2} }{2} +E\cdot \left(q_{12} -q_{11} \right)-\frac{C_{1} \cdot E^{2} }{2} =\]
\[=\frac{C_{1} \cdot U_{1}^{2} }{2} +\frac{C_{2} \cdot U_{2}^{2} }{2} +E\cdot C_{1} \cdot \left(E-U_{1} \right)-\frac{C_{1} \cdot E^{2} }{2} ,\]
Q = 250 мДж.