Автор Тема: К плоскому вакуумному конденсатору  (Прочитано 1589 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
1) К плоскому вакуумному конденсатору, расстояние между пластинами которого d = 4∙10-3 м, приложено гармоническое напряжение с частотой 4∙102 Гц и амплитудой Um = 50 В. Определите максимальную плотность тока смещения в конденсаторе и укажите для произвольной точки в нём направления векторов E, H и jсм. Сделать рисунок.
« Последнее редактирование: 27 Ноября 2017, 23:17 от Антон Огурцевич »

Оффлайн Gala

  • Постоялец
  • ***
  • Сообщений: 97
  • Рейтинг: +0/-0
Re: К плоскому вакуумному конденсатору
« Ответ #1 : 01 Декабря 2017, 22:16 »
Переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах. Ток смещения пропорционален скорости изменения вектора электрического смещения. Плотность тока смещения \[ \vec j = \frac{{\partial \vec D}}{{\partial t}}, \]
D - электрическое смещение  в конденсаторе  \[ \vec D = \varepsilon {\varepsilon _0}\vec E. \]
 Для вакуума ε = 1. Поле конденсатора однородно и связь между напряжением и напряженностью
\[\begin{array}{l}
U = Ed,\;U = {U_m}\cos \omega t,\;\;\omega  = 2\pi \nu  \Rightarrow Ed = {U_m}\cos 2\pi \nu t\\
E = \frac{{{U_m}}}{d}\cos 2\pi \nu t.\\
j = {\varepsilon _0}\frac{\partial }{{\partial t}}\frac{{{U_m}}}{d}\cos 2\pi \nu t =  - \frac{{{\varepsilon _0}{U_m}2\pi \nu }}{d}\sin 2\pi \nu t.
\end{array}\]
Максимальное значение плотности тока смещения будет при значении  sin 2πνt = 1:
\[j =  - \frac{{{\varepsilon _0}{U_m}2\pi \nu }}{d} = \frac{{8,85 \cdot {{10}^{ - 12}} \cdot 50 \cdot 2 \cdot 3,14 \cdot 4 \cdot {{10}^2}}}{{4 \cdot {{10}^{ - 3}}}} = 2,8 \cdot {10^{ - 4}}.\]
При зарядке конденсатора (рис.1) поле в конденсаторе усиливается и следовательно \[ \frac{{\partial \vec D}}{{\partial t}} \succ 0 \] и вектор электрического смещения совпадает по направлению с вектором напряженности и вектором плотности тока смещения \[ \frac{{\partial \vec D}}{{\partial t}} \uparrow  \uparrow \vec D,\;\;\frac{{\partial \vec D}}{{\partial t}} \uparrow  \uparrow \vec J. \]
При разрядке конденсатора (рис.2) поле ослабляется; следовательно \[ \frac{{\partial \vec D}}{{\partial t}} \prec 0 \] \[ \frac{{\partial \vec D}}{{\partial t}} \uparrow  \downarrow \vec D,\;\;\frac{{\partial \vec D}}{{\partial t}} \uparrow  \uparrow \vec J. \]
Ответ: 0,28 мА/м2.
« Последнее редактирование: 11 Декабря 2017, 06:13 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24