Решение.
Конденсатор зарядили и отключили от источника тока при извлечении стекла из конденсатора, заряд на пластинах поддерживается постоянным, изменяется электроемкость конденсатора. Работа, которую нужно затратить, чтобы удалить стеклянную пластину из конденсатора, если заряд на пластинах поддерживается постоянным совершенна против сил электростатического поля и равна изменению энергии конденсатора
\[ \begin{align}
& A=\Delta W={{W}_{2}}-{{W}_{1}}\ \ \ (1),\ {{W}_{2}}=\frac{{{q}^{2}}}{2\cdot {{C}_{2}}}\ \ \ (2),\ \ {{W}_{1}}=\frac{{{q}^{2}}}{2\cdot {{C}_{1}}}\ \ \ (3),\ {{C}_{1}}=\frac{\varepsilon \cdot {{\varepsilon }_{0}}\cdot S}{d}\ \ \ (4), \\
& {{C}_{2}}=\frac{{{\varepsilon }_{0}}\cdot S}{d}(5),q={{q}_{1}}={{q}_{2}}={{C}_{1}}\cdot U(6). \\
\end{align} \]
Зная электроемкость первого конденсатора определим электроемкость второго конденсатора
\[ \frac{{{C}_{1}}}{{{C}_{2}}}=\frac{\varepsilon \cdot {{\varepsilon }_{0}}\cdot S}{d}\cdot \frac{d}{{{\varepsilon }_{0}}\cdot S},\frac{{{C}_{1}}}{{{C}_{2}}}=\varepsilon ,{{C}_{2}}\ =\frac{{{C}_{1}}}{\varepsilon }\ \ (7). \]
Определим работу
\[ \begin{align}
& A=\frac{{{q}^{2}}}{2\cdot {{C}_{2}}}-\frac{{{q}^{2}}}{2\cdot {{C}_{1}}}\ ,A=\frac{{{({{C}_{1}}\cdot U)}^{2}}\cdot \varepsilon }{2\cdot {{C}_{1}}}-\frac{{{({{C}_{1}}\cdot U)}^{2}}}{2\cdot {{C}_{1}}}\ ,A=\frac{{{C}_{1}}\cdot {{U}^{2}}}{2}\cdot (\varepsilon -1)(8\,). \\
& A=\frac{1,33\cdot {{10}^{-10}}\cdot {{(600)}^{2}}}{2}\cdot (6-1)=1,197\cdot {{10}^{-4}}. \\
\end{align} \]
Ответ: 1,197∙10
-4 Дж.