Решение.
Дифракция Фраунгофера на щели (условия максимумов и минимумов)
Если число зон Френеля четное, то
\[ d\cdot \sin \varphi =2\cdot m\cdot \frac{\lambda }{2}(m=0,\pm 1,\pm 2,\pm 3,...), \]
наблюдается дифракционный минимум(колебания от каждой пары соседних зон взаимно гасят друг друга).
Если число зон Френеля нечетное, то
\[ d\cdot \sin \varphi =(2\cdot m+1)\cdot \frac{\lambda }{2}(m=0,\pm 1,\pm 2,\pm 3,...), \]
наблюдается дифракционный максимум (одна зона Френеля не скомпенсирована).
По условию задачи наблюдается максимум интенсивности на щели:
\[ \begin{align}
& d\cdot \sin \varphi =(2\cdot m+1)\cdot \frac{\lambda }{2},m=0,\pm 1,\pm 2,(1).\sin \varphi =\frac{(2\cdot m+1)\cdot \frac{\lambda }{2}}{d}(2). \\
& m=2,\sin \varphi =\frac{(2\cdot 2+1)\cdot \frac{656\cdot {{10}^{-9}}}{2}}{{{10}^{-5}}}=1640\cdot {{10}^{-4}}=0,1640,{{\varphi }_{2}}={{9,491}^{0}}. \\
& m=1,\sin \varphi =\frac{(2\cdot 1+1)\cdot \frac{656\cdot {{10}^{-9}}}{2}}{{{10}^{-5}}}=984\cdot {{10}^{-4}}=0,0984,{{\varphi }_{1}}={{5,647}^{0}}. \\
\end{align}
\]
∆φ = φ
2 – φ
1, ∆φ = 9,491º - 5,647º = 3,844º.
Ответ: 3,844º.