Решение.
Воспользуемся законом сохранения кинетической энергии молекул газа (гелий считаем идеальным газом, поэтому потенциальной энергии нет):
Еk3 = Еk1 + Еk2 (1).
Где
Еk3 — кинетическая энергия молекул смеси газов,
Еk1, Еk2 — кинетические энергии молекул газов в первом сосуде и во втором. Тогда с учетом того, что в сосудах один и тот же газ, и
N1 = N2 = N получаем:
\[ \begin{matrix}
\begin{align}
& \frac{({{m}_{1}}+{{m}_{2}})\cdot \left\langle \upsilon _{3}^{2} \right\rangle }{2}=\frac{{{m}_{1}}\cdot \left\langle \upsilon _{1}^{2} \right\rangle }{2}+\frac{{{m}_{2}}\cdot \left\langle \upsilon _{2}^{2} \right\rangle }{2},{{m}_{1}}={{N}_{1}}\cdot {{m}_{0}},{{m}_{2}}={{N}_{2}}\cdot {{m}_{0}}, \\
& \left( {{N}_{1}}+{{N}_{2}} \right)\cdot \frac{{{m}_{0}}\cdot \left\langle \upsilon _{3}^{2} \right\rangle }{2}={{N}_{1}}\cdot \frac{{{m}_{0}}\cdot \left\langle \upsilon _{1}^{2} \right\rangle }{2}+{{N}_{2}}\cdot \frac{{{m}_{0}}\cdot \left\langle \upsilon _{2}^{2} \right\rangle }{2}, \\
\end{align} \\
\left( 2\cdot N \right)\cdot \left\langle \upsilon _{3}^{2} \right\rangle =N\cdot \left\langle \upsilon _{1}^{2} \right\rangle +N\cdot \left\langle \upsilon _{2}^{2} \right\rangle , \\
\left\langle \upsilon _{3}^{2} \right\rangle =\frac{\left\langle \upsilon _{1}^{2} \right\rangle +\left\langle \upsilon _{2}^{2} \right\rangle }{2},\ \ \ \left\langle {{\upsilon }_{3}} \right\rangle =\sqrt{\frac{\left\langle \upsilon _{1}^{2} \right\rangle +\left\langle \upsilon _{2}^{2} \right\rangle }{2}}. \\
\ \left\langle {{\upsilon }_{3}} \right\rangle =\sqrt{\frac{{{({{10}^{3}})}^{2}}+{{(2\cdot {{10}^{3}})}^{2}}}{2}}=1,58\cdot {{10}^{3}}. \\
\end{matrix}
\]
Ответ: 1580 м/с.