Решение.
Покажем силы, которые действуют на один из зарядов. Заряды находится в покое, значит, равнодействующая всех сил равна нулю.
\[ {{\vec{F}}_{n}}+{{\vec{F}}_{K}}+m\cdot \vec{g}=0. \]
Найдем проекции на оси
Ох и
Оу:
\[ Ox:{{F}_{n}}\cdot \sin \alpha -{{F}_{K}}=0\ \ \ (1),Oy:{{F}_{n}}\cdot \cos \alpha -m\cdot g=0\ \ \ (2),{{F}_{K}}=\frac{k\cdot {{q}^{2}}}{{{S}^{2}}}\ \ \ (3). \]
(3) подставим в (1) из (1) выразим
Fn, подставим в (2) и выразим тангенс угла расхождения нитей в воздухе двумя способами и определим расстояние
S между зарядами в положении равновесия \[ \begin{align}
& {{F}_{n}}=\frac{k\cdot {{q}^{2}}}{{{S}^{2}}\cdot \sin \alpha }\ \ (4),\frac{k\cdot {{q}^{2}}\cdot \cos \alpha }{{{S}^{2}}\cdot \sin \alpha }=m\cdot g,tg\alpha =\frac{k\cdot {{q}^{2}}}{{{S}^{2}}\cdot m\cdot g}(5),tg\alpha =\frac{0,5\cdot S}{H}(6). \\
& \frac{0,5\cdot S}{H}=\frac{k\cdot {{q}^{2}}}{{{S}^{2}}\cdot m\cdot g},{{S}^{3}}=\frac{k\cdot {{q}^{2}}\cdot H}{0,5\cdot m\cdot g},S=\sqrt[3]{\frac{k\cdot {{q}^{2}}\cdot H}{0,5\cdot m\cdot g}}(7). \\
\end{align} \]