Решение. Луч белого света падает на призму. Используя закон преломления света, определим угол преломления β
1.
\[ \frac{\sin {{\alpha }_{1}}}{\sin {{\beta }_{1}}}=n,\sin {{\beta }_{1}}=\frac{\sin {{\alpha }_{1}}}{n},{{\beta }_{1}}=\arcsin \frac{\sin {{\alpha }_{1}}}{n}(1). \]
Рассмотрим треугольник
АВС. Θ – внешний угол этого треугольника. Определим угол α
2.
\[ {{\beta }_{1}}+{{\alpha }_{2}}=\theta ,{{\alpha }_{2}}=\theta -{{\beta }_{1}},{{\alpha }_{2}}=\theta -\arcsin \frac{\sin {{\alpha }_{1}}}{n}(2). \]
Используя закон преломления света, определим угол преломления β
2.
\[ \begin{align}
& \frac{\sin {{\alpha }_{2}}}{\sin {{\beta }_{2}}}=\frac{1}{n},\sin {{\beta }_{2}}=\sin {{\alpha }_{2}}\cdot n,\sin {{\beta }_{2}}=\sin (\theta -\arcsin \frac{\sin {{\alpha }_{1}}}{n})\cdot n(3). \\
& {{\beta }_{2}}=\arcsin (\sin (\theta -\arcsin \frac{\sin {{\alpha }_{1}}}{n})\cdot n)(4). \\
& {{\beta }_{2\Phi }}=\arcsin (\sin ({{60}^{0}}-\arcsin \frac{\sin {{45}^{0}}}{1,632})\cdot 1,632),{{\beta }_{2\Phi }}=\arcsin (\sin ({{60}^{0}}-{{25,593612}^{0}})\cdot 1,632), \\
& {{\beta }_{2\Phi }}={{67,232}^{0}}. \\
& {{\beta }_{2K}}=\arcsin (\sin ({{60}^{0}}-\arcsin \frac{\sin {{45}^{0}}}{1,61})\cdot 1,61),{{\beta }_{2K}}=\arcsin (\sin ({{60}^{0}}-{{26}^{0}})\cdot 1,61), \\
& {{\beta }_{2K}}={{64,314}^{0}}. \\
\end{align} \]
Определим расстояние между красными и фиолетовыми лучами на экране
\[ \begin{align}
& \Delta a={{a}_{\Phi }}-{{a}_{K}},{{a}_{\Phi }}=l\cdot tg{{\beta }_{2\Phi }},{{a}_{K}}=l\cdot tg{{\beta }_{2K}},\Delta a=l\cdot tg{{\beta }_{2\Phi }}-l\cdot tg{{\beta }_{2K}},\Delta a=l\cdot (tg{{\beta }_{2\Phi }}-tg{{\beta }_{2K}}). \\
& ,\Delta a=0,1\cdot (tg{{67,232}^{0}}-tg64,314)=0,1\cdot (2,38263-2,079146)=0,03. \\
\end{align} \]
Ответ: 3 см.