Решение.
Материал призмы имеет коэффициент преломления, коэффициент преломления стекла
n = 1,6 (табличные данные). Падающий луч проходя через призму отклоняется, угол отклонения зависит от показателя преломления материала призмы, отклоняющего угла и угла падения луча на призму. Минимальный угол отклонения луча будет в случае симметричного хода луча: угол падения луча на первую грань равен углу преломления на второй грани.
Определим минимальный угол отклонения луча при падении на стеклянную призму в воздухе
nв = 1,0 (табличные данные). (Рис. 1).
α1 = β2 (1).
\[ \begin{align}
& \frac{\sin {{\alpha }_{1}}}{\sin {{\beta }_{1}}}=\frac{n}{{{n}_{0}}}(2),\frac{\sin {{\alpha }_{2}}}{\sin {{\beta }_{2}}}=\frac{{{n}_{0}}}{n}(3),\sin {{\alpha }_{1}}=\frac{n}{{{n}_{0}}}\cdot \sin {{\beta }_{1}},\sin {{\alpha }_{1}}=\frac{1,6}{1,0}\cdot \frac{1}{2}=0,8. \\
& {{\alpha }_{1}}=\arcsin 0,8=54{}^\circ . \\
& \sin {{\beta }_{1}}=\frac{{{n}_{0}}}{n}\cdot \sin {{\alpha }_{1}},\sin {{\alpha }_{2}}=\frac{{{n}_{0}}}{n}\cdot \sin {{\beta }_{2}}. \\
\end{align} \]
β
1 = α
2, угол
ВАС равен углу
ВСА, треугольник
ВАС равнобедренный.
Рассмотрим треугольник
ВАС. Угол
ВАС равен 90º – β
1, угол
ВСА равен 90º – α
2. Сумма всех углов треугольника равна 180º.
90º – β1 + 90º – α2 + φ = 180º, β1 + α2 = φ, 2∙β1 = φ, β1 = 30° (3).
Угол наименьшего отклонения, внешний угол δ треугольника
АОС.
\[ \begin{align}
& {{\alpha }_{1}}-{{\beta }_{1}}+{{\beta }_{2}}-{{\alpha }_{2}}=\delta ,{{\alpha }_{1}}-{{\beta }_{1}}+{{\alpha }_{1}}-{{\alpha }_{2}}=\delta ,{{\alpha }_{1}}-{{\beta }_{1}}+{{\alpha }_{1}}-{{\beta }_{1}}=\delta ,2\cdot ({{\alpha }_{1}}-{{\beta }_{1}})=\delta , \\
& \delta =2\cdot (54{}^\circ -30{}^\circ )=48{}^\circ . \\
\end{align}
\]
Призму поместили в воду, определим угол наименьшего отклонения призмы в воде.
Для решения задачи необходим абсолютный показатель преломления воды,
n1 = 1,33.
\[ \begin{align}
& \frac{\sin {{\alpha }_{1}}}{\sin {{\beta }_{1}}}=\frac{n}{{{n}_{1}}},\sin {{\alpha }_{1}}=\frac{1,6}{1,33}\cdot \frac{1}{2}=0,6.{{\alpha }_{1}}=\arcsin 0,6=37{}^\circ . \\
& \delta =2\cdot (37{}^\circ -30{}^\circ )=14{}^\circ . \\
\end{align} \]
Определим максимальный угол отклонения луча при падении на стеклянную призму в воздухе. Максимальное отклонение достигается при условии, что угол падения α
1 = 90°. (Рис. 2).
δ = 180°- φ, δ = 180°- 60° = 120°.
Ответ: Для воздуха 48° ≤ δ ≤ 120°.
Для воды 14° ≤ δ ≤ 120°.