148. Наклонная плоскость составляет с горизонтом угол α = 15°. По ней вверх пускают с нижней точки плоскую шайбу, которая, поднявшись на некоторую высоту, затем соскальзывает по тому же пути вниз. Каков коэффициент трения шайбы о плоскость, если время спуска в
n = 3 раза больше времени подъема?
Решение. На шайбу действуют сила тяжести (
m∙g), сила реакции опоры (
N) и сила трения (
Ftr): 1) когда шайба скользит вверх, сила трения направлена вниз (рис. 1), 2) когда шайба скользит вниз, сила трения — вверх (рис. 2). Скорость шайбы в первом случае уменьшается, поэтому ускорение направлено в противоположную сторону, т.е. вниз. Во втором случае скорость увеличивается, ускорение будет направлено в сторону скорости. Запишем второй закон Ньютона
\[ m \cdot \vec{a} = \vec{N} + m \cdot \vec{g} + \vec{F}_{tr}, \]
0Y: 0 = N – m∙g⋅cos α,
0Х: m⋅a1 = Ft + m⋅g⋅sin α, m⋅a2 = –Ft + m⋅g⋅sin α,
где
Ft = μ⋅
N,
N = m⋅g⋅cos α (из проекции уравнения на ось 0
Y). Тогда
m⋅a1 = μ⋅m⋅g⋅cos α + m⋅g⋅sin α = m⋅g⋅(μ⋅cos α + sin α),
a1 = g⋅(sin α + μ⋅cos α), a2 = g⋅(sin α – μ⋅cos α).
Шайба, при движении вверх и вниз, совершает одинаковое перемещение, причем при движении вверх υ
x = 0,
ax = –a1; при движении вниз — υ
0x = 0,
ax = a2, поэтому
\[ \Delta r_{1x} = \upsilon_{x} \cdot t - \frac{a_{x} \cdot t^{2}}{2} = \frac{a_{1} \cdot t_{1}^{2}}{2}, \, \, \, \Delta r_{2x} = \upsilon_{0x} \cdot t + \frac{a_{x} \cdot t^{2}}{2} = \frac{a_{2} \cdot t_{2}^{2}}{2}, \]
где
t2 =
n⋅t1. Тогда
\[ \Delta r_{1x} = \Delta r_{2x} = \frac{a_{1} \cdot t_{1}^{2}}{2} = \frac{a_{2} \cdot t_{2}^{2}}{2}, \; \; \frac{a_{1}}{a_{2}} = \frac{t_{2}^{2}}{t_{1}^{2}} = n^{2}.
\]
Из уравнений (1) и (2) получаем
\[ \frac{a_{1}}{a_{2}} = n^{2} = \frac{\sin \alpha + \mu \cdot \cos \alpha}{\sin \alpha - \mu \cdot \cos \alpha}, \, \, \, n^{2} \cdot \sin \alpha - n^{2} \cdot \mu \cdot \cos \alpha = \sin \alpha + \mu \cdot \cos \alpha, \]
\[ \left(n^{2} - 1\right) \cdot \sin \alpha = \mu \cdot \cos \alpha \cdot \left(n^{2} + 1 \right), \; \; \mu = \frac{n^{2} - 1}{n^{2} + 1} \cdot tg \alpha, \]
μ = 0,21.