235. Пуля массой
m, летящая горизонтально со скоростью υ, попадает в ящик с песком массой
M, подвешенный на жестком невесомом стержне длиной
l, который шарнирно укреплен за верхний конец («баллистический маятник»), и застревает в нем. Стержень может вращаться вокруг горизонтальной оси, перпендикулярной направлению скорости пули. Пренебрегая размерами ящика, определить максимальный угол отклонения стержня от вертикали.
Решение. Так как пуля застревает в ящике, то применять сразу закон сохранения энергии нельзя. Рассмотрим вначале процесс столкновения пули и ящика (неупругий удар), затем движение системы ящик-пуля на стержне.
Процесс столкновения пули и ящика (рис. 1). Так как удар неупругий, то для нахождения скорости системы ящик-пуля воспользуемся законом сохранения импульса:
\[ m\cdot \vec{\upsilon } = \left(m+M \right) \cdot \vec{\upsilon }_{1}, \]
0Х: m⋅υ = (m + M)⋅υ1
или
\[ \upsilon _{1} = \frac{m \cdot \upsilon }{m+M}. \] (1)
Процесс движения системы ящик-пуля на стержне. Силой сопротивления, по умолчанию, пренебрегаем, поэтому теперь можем применять закон сохранения энергии. За нулевую высоту примем высоту, на которой находится ящик в нижнем положении (рис. 2).
Полная механическая энергия системы ящик-пуля в начальном состоянии (с учетом уравнения (1))
\[ W_{0} = \frac{\left(m+M\right) \cdot \upsilon _{1}^{2}}{2} = \frac{m+M}{2} \cdot \left(\frac{m \cdot \upsilon }{m+M} \right)^{2} = \frac{m^{2} \cdot \upsilon ^{2}}{2\cdot \left(m+M\right)}. \]
Полная механическая энергия системы ящик-пуля в конечном состоянии. Максимальный угол α отклонения стержня от вертикали будет в тот момент, когда система достигнет максимальной высоты и их скорость υ
2 = 0, т.е.
W = (m + M)⋅g⋅h,
где
h = AB = OB – OA = l – l⋅cos α =
l⋅(1 – cos α).
Из закона сохранения механической энергии следует, что
\[ \frac{m^{2} \cdot \upsilon ^{2}}{2 \cdot \left(m+M\right)} = \left(m+M \right) \cdot g \cdot l \cdot \left(1-\cos \alpha \right), \, \, \, 1-\cos \alpha = \frac{m^{2} \cdot \upsilon ^{2}}{2 \cdot \left(m+M \right)^{2} \cdot g \cdot l}, \]
\[ \cos \alpha = 1-\frac{m^{2} \cdot \upsilon ^{2}}{2 \cdot \left(m+M\right)^{2} \cdot g \cdot l}, \; \; \; \alpha = \arccos \left(1-\frac{m^{2} \cdot \upsilon ^{2}}{2 \cdot \left(m+M\right)^{2} \cdot g \cdot l} \right).\;\;\; (2) \]
Примечание. Так как –1 ≤ cos α ≤ 1, то уравнение (2) можно применять если
\[ -1 \le 1-\frac{m^{2} \cdot \upsilon ^{2}}{2 \cdot \left(m+M \right)^{2} \cdot g \cdot l}, \; \; \; \frac{m^{2} \cdot \upsilon ^{2}}{\left(m+ M \right)^{2} \cdot g \cdot l} \le 4. \]
Если это неравенство не выполняется, то угол α = 180°, и система совершает полный оборот.