546. Между вертикальными пластинами плоского воздушного конденсатора подвешен на тонкой шёлковой нити маленький шарик, несущий заряд
q0 = 3,0 нКл. Какой заряд надо сообщить конденсатору, чтобы нить составила с вертикалью угол α = 45º? Масса шарика
m = 4,0 г, площадь каждой пластины конденсатора
S = 314 см
2.
Решение: если сообщить заряд конденсатору, между его обкладками возникнет электрическое поле, которое будет действовать силой на заряженный шарик, и он отклонится от вертикали. На шарик действуют силы:
mg – сила тяжести, направленная вертикально вниз,
T – сила натяжения нити, направленная вдоль нити,
F – сила со стороны электростатического поля конденсатора (
см. рис). Шарик находится в равновесии, это означает, что сумма всех сил, действующих на него равна нулю
\[ \vec{T}+m\vec{g}+\vec{F}=0. \]
Спроецируем условие равновесия на выбранную систему координат, учтём, что сила, действующая на заряд со стороны поля, равна
F = q0∙E,
где
E – напряжённость электростатического поля, созданного заряженным конденсатором.
\[ \begin{array}{l} {x:-T\cdot \sin \alpha +q_{0} \cdot E=0,T\cdot \sin \alpha =q_{0} \cdot E,} \\ {y:T\cdot \cos \alpha -mg=0,T\cdot \cos \alpha =mg.} \end{array} \]
Разделив уравнения, выразим напряжённость поля:
\[ \begin{array}{l} {\frac{T\cdot \sin \alpha }{T\cdot \cos \alpha } =\frac{q_{0} \cdot E}{mg} ,} \\ {E=\frac{mg\cdot tg\alpha }{q_{0} } .} \end{array} \]
С другой стороны электроёмкость конденсатора по определению:
\[ C=\frac{q}{U}. \]
Здесь
q – заряд конденсатора,
U – напряжение между обкладками, которое связано с напряжённостью
U = E∙d
Где
d – расстояние между пластинами. Ёмкость плоского конденсатора можно также определить, зная площадь пластин, расстояние между ними, электрическую постоянную ε
0 = 8,85∙10
-12 Ф/м, и диэлектрическую проницаемость ε изолятора (в нашем случае воздух, ε = 1):
\[ C=\frac{\varepsilon _{0} \cdot \varepsilon \cdot S}{d} =\frac{\varepsilon _{0} \cdot S}{d}. \]
Тогда получим для напряжённости
\[ \begin{array}{l} {\frac{\varepsilon _{0} \cdot S}{d} =\frac{q}{E\cdot d}} \\ {E=\frac{q}{\varepsilon _{0} \cdot S}.} \end{array} \]
Приравняв полученные выражения для напряжённости, найдём заряд
\[ q=\frac{\varepsilon _{0} \cdot S\cdot mg}{q_{0}} \cdot tg\alpha. \]
Ответ: 3,6∙10
-6 Кл.