549. Два одноименно заряженных шарика массой m = 0,50 г каждый подвешены в вакууме на очень тонких невесомых, нерастяжимых и непроводящих нитях одинаковой длины. Каждая из нитей образует с вертикалью угол α = 30°. Затем вся система погружается в неэлектропроводящую жидкость, плотность которой равна плотности материала шариков, а диэлектрическая проницаемость ε = 2,0. Найти силу натяжения нитей после погружения в жидкость. Каков характер равновесия шариков?
Решение.
1. Система в вакууме.(рис_1)
На шарики действуют сила тяжести mg, сила натяжения нити T
1 и сила кулоновского взаимодействия F
k1Шарики находятся в равновесии, поэтому
\[ m\vec{g}+{{\vec{T}}_{1}}+{{\vec{F}}_{k1}}=0 \]
В проекциях на оси координат
OX: -T1·sinα + Fk1 = 0; T1·sinα = Fk1
OY: -m·g + T1·cosα = 0; T1·cosα = mg
Разделив первое уравнение на второе, получим
Fk1 = m·g·tgα (1)
С другой стороны
\[ \begin{align}
& {{F}_{k1}}=\frac{k\cdot {{q}^{2}}}{{{r}^{2}}};r=2\cdot l\cdot \sin \alpha \\
& {{F}_{k1}}=\frac{k\cdot {{q}^{2}}}{4\cdot {{l}^{2}}\cdot {{\sin }^{2}}\alpha }(2) \\
\end{align}
\]
2. Система погружена в жидкость (рис_2, рис_3)
При погружении в жидкость с диэлектрической проницаемостью ε измениться угол расхождения нитей, так как измениться сила кулоновского взаимодействия.
На шарики действуют сила тяжести mg, сила натяжения нити T, сила кулоновского взаимодействия F
k2 и сила Архимеда F
aШарики находятся в равновесии, поэтому
\[ m\vec{g}+{{\vec{T}}_{1}}+{{\vec{F}}_{k2}}+{{\vec{F}}_{a}}=0 \]
В проекциях на оси
OX: -T·sinβ + Fk2 = 0 (3)
OY: -m·g + Fa + T·cosβ = 0; (4)
Поскольку плотность шарика равна плотности жидкости, то сила Архимеда численно равна силе тяжести mg (F
a = ρ
1·g·V; m·g = ρ
2·V·g; ρ
1 = ρ
2 )
Тогда (4) перепишется
T·cosβ = 0.
Это значит, что угол β = 90 и оба шарика окажутся на одной прямой, проходящей через точку подвеса нитей.
Тогда из (3)
T = F
k2\[ {{F}_{k2}}=\frac{k\cdot {{q}^{2}}}{4\cdot {{l}^{2}}\cdot \varepsilon }(5) \]
Решим совместно (5) и (2) с учетом (1)
\[ \begin{align}
& {{F}_{k1}}=\frac{k\cdot {{q}^{2}}}{4\cdot {{l}^{2}}\cdot {{\sin }^{2}}\alpha } \\
& {{F}_{k2}}=\frac{4\cdot {{l}^{2}}\cdot {{\sin }^{2}}\alpha }{4\cdot {{l}^{2}}\cdot \varepsilon }\cdot m\cdot g\cdot tg\alpha \\
& T={{F}_{k2}}=\frac{m\cdot g\cdot tg\alpha \cdot {{\sin }^{2}}\alpha }{\varepsilon } \\
\end{align}
\]